1 курс |
2 курс |
3 курс |
4 курс |
Category Archives: Бакалавриат
Высшая математика
Лекции. Базовый поток
Осенний семестр
Дата | Содержание | Конспект лекций |
07.09.2021 | Кратные интегралы. Двойной интеграл. Мотивировка к определению двойного интеграла. Определение двойного интеграла. Классы интегрируемых функций. Теорема Фубини | Лекция 1 конспект |
08.09.2021 | Примеры вычисления двойных интегралов. Свойства двойных интегралов. Физический и геометрический смысл двойных интегралов. Тройные интегралы | Лекция 2 конспект |
14.09.2021 | Тройные интегралы (продолжение): классы интегрируемых функций, свойства тройного интеграла, геометрический и физический смысл тройного интеграла, сведение тройного интеграла к повторному, Теорема 1 (Фубини), Теорема 2 (Фубини). Замена переменных в кратных интегралах. Геометрический смысл Якобиана дифференцируемого отображения | Лекция 3 конспект |
15.09.2021 | Геометрический смысл Якобиана дифференцируемого отображения (продолжение). Замена переменных в двойном интеграле. Пример: полярные координаты на плоскости. Свойства замены переменных. Примеры | Лекция 4 конспект |
21.09.2021 | Замены переменных в тройном интеграле. Пример: сферическая система координат. Несобственные кратные интегралы. Несобственные интегралы по неограниченной области. Несобственные интегралы по ограниченной области. Примеры | Лекция 5 конспект |
22.09.2021 | Вычисление интеграла Пуассона. Некоторые приложения и свойства Гамма-функции и Бета-функции. Примеры | Лекция 6 конспект |
28.09.2021 | Криволинейные и поверхностные интегралы. Криволинейный интеграл 1-го рода. Кривая на плоскости и в трехмерном пространстве. Параметризация кривой. Примеры. Длина кривой | Лекция 7 конспект |
29.09.2021 | Криволинейный интеграл 1-го рода (продолжение). Определение криволинейного интеграла 1-го рода. Геометрический и физический смысл. Вычисление криволинейного интеграла 1-го рода. Примеры. Криволинейный интеграл 2-го рода. Ориентация кривой. Определение криволинейного интеграла 2-го рода. Физический смысл | Лекции 8 и 9 конспект |
05.10.2021 | Криволинейный интеграл 2-го рода (продолжение). Свойства криволинейного интеграла 2-го рода. Связь криволинейных интегралов 1-го и 2-го рода. Вычисление криволинейного интеграла 2-го рода. Примеры. Формула Грина | Лекция 10 конспект |
06.10.2021 | Доказательство формулы Грина. Интегралы, не зависящие от пути. Три эквивалентных утверждения и их доказательство. Вычисление интегралов, не зависящих от пути. Формула Пуанкаре | Лекция 11 конспект |
12.10.2021 | Интегралы, не зависящие от пути (продолжение). Восстановление функции по дифференциалу. Примеры. Поверхностный интеграл 1-го рода. Поверхности в трехмерном пространстве. Примеры. Площадь поверхности | Лекция 12 конспект |
13.10.2021 | Поверхностные интегралы 1-го рода (продолжение). Примеры вычисления площади поверхности. Вычисление площади поверхности, заданной явно. Определение поверхностного интеграла, 1-го рода. Случай недифференцируемой параметризации. Свойства и физический смысл поверхностного интеграла 1-го рода. | Лекция 13 конспект |
19.10.2021 | Физический смысл поверхностного интеграла 1-го рода (продолжение). Ньютонов потенциал. Вычисление интеграла Гаусса. | Лекция 14 конспект |
20.10.2021 | Поверхностный интеграл 2-о рода. Нормаль к поверхности. Случай явного задания поверхности. Примеры. Ориентация поверхности. Примеры. Определение поверхностного интеграла 2-го рода. Свойства и физический смысл поверхностного интеграла 2-го рода. | Лекция 15 конспект |
Теория Вероятностей
Лекции. Поток для экспериментаторов
Дата | Содержание | Видео лекции (плэйлист) |
15.04.2020 | 0. Элементы комбинаторики 1. Пространство элементарных событий |
Лекция 1 часть 1 часть 2 часть 3 |
17.04.2020 | 2. Вероятностное пространство — Операции над множествами — Сигма-алгебра событий. Вероятность 3. Способы задания вероятности — Классические вероятности |
Лекция 2 часть 1 часть 2 часть 3 |
21.04.2020 | — Геометрические вероятности 4. Условная вероятность — собственно условная вероятность — Формула полной вероятности — Формула Байеса |
Лекция 3 часть 1 часть 2 часть 3 |
24.04.2020 | 5. Независимость событий — Попарная независимость — Независимость в совокупности 6. Испытания Бернулли — Распределение Бернулли — Биномиальное распределение 7. Вероятностная модель эксперимента со счётным числом исходов — Геометрическое распределение — Распределение Пуассона |
Лекция 4 часть 1 часть 2 часть 3 |
28.04.2020 | 8. Предельные теоремы в схеме Бернулли — Локальная теорема Муавра — Лапласа — Интегральная теорема Муавра — Лапласа — Теорема Пуассона 9. Случайные величины и их распределения — Случайна величина — Распределение случайной величины |
Лекция 5 часть 1 часть 2 часть 3 |
01.05.2020 | — Функция распределения случайной величины 10.Дискретные и абсолютно непрерывные распределения — Дискретные распределения — Абсолютно непрерывные распределения |
Лекция 6 часть 1 часть 2 часть 3 |
05.05.2020 | 11.Совместное распределение случайных величин 12.Независимость случайных величин |
Лекция 7 часть 1 часть 2 часть 3 |
08.05.2020 | 13.Функции от случайных величин 14.Математическое ожидание — Определение математического ожидания — Математическое ожидание дискретных случайных величин |
Лекция 8 часть 1 часть 2 часть 3 |
12.05.2020 | — Математическое ожидание абсолютно непрерывных случайных величин — Свойства математического ожидания 15.Дисперсия — Свойства дисперсии — Дисперсия дискретных и абсолютно непрерывных случайных величин |
Лекция 9 часть 1 часть 2 часть 3 |
15.05.2020 | — Дисперсия дискретных и абсолютно непрерывных случайных величин 16.Ковариация. Коэффициент корреляции — Определение ковариации. Свойства ковариации — Некоррелированность и независимость случайных величин — Матрица ковариаций |
Лекция 10 часть 1 часть 2 часть 3 |
19.11.2020 | — Коэффициент корреляции 17-. Моменты случайных величин 17. Закон больших чисел — Сходимость по вероятности — Неравенства Чебышёва 18. Характеристические функции — Определение. Формулы вычисления |
Лекция 11 часть 1 часть 2 часть 3 |
26.11.2020 | — Свойства характеристических функций. Примеры — Теорема Бохнера — Хинчина (формулировка) 19. Центральная предельная теорема — Сходимость распределений в слабом смысле — Формулировка и доказательство ЦПТ — Правило трёх сигм. Скорость сходимости в законе больших чисел |
Лекция 12 часть 1 часть 2 часть 3 |
03.12.2020 | 20. Многомерное нормальное распределение — Гауссовские векторы. Характеристическая функция. Свойства — Теорема о замене переменной — Теорема о существовании плотности |
Лекция 13 часть 1 часть 2 часть 3 |
10.12.2020 | 21. Основные понятия математической статистики — Случайные выборки. Статистики 22. Эмпирическое распределение — Теорема о сходимости эмпирического распределения к общему 23. Выборочные моменты — Выборочные моменты. Оценки параметров распределений — Теорема об оценке выборочных моментов — Теорема о сходимости распределений выборочных моментов |
Лекция 14 часть 1 часть 2 часть 3 |
17.12.2020 | — Теорема об оценки дисперсии — Смещённая и несмещённая оценка дисперсии 24. Выборки из нормальной совокупности — Распределения «хи-квадрат» и Стьюдента — Лемма о выборках из нормальной совокупности — Доверительный интервал. Задача оценивания параметров — Оценка среднего нормального закона |
Лекция 15 часть 1 часть 2 часть 3 |
24.12.2020 | — Проверка гипотезы о среднем нормального закона 25. Линейная регрессия — Формулировка задачи о линейной регрессии — Свойства решений экстремальной задачи. Формулы МНК — Лемма о коэффициентах линейной регрессии — Оценка параметров линейной регрессии — Проверка гипотезы о линейной зависимости |
Лекция 16 часть 1 часть 2 часть 3 часть 4 |
Математический анализ
Лекции. Основной поток
Дата | Видео (Плэйлист) |
19.03.2020 | Лекция 1 Видео |
26.03.2020 | Лекция 2 Видео |
30.03.2020 | Лекция 3 Видео |
02.04.2020 | Лекция 4 Видео |
Высшая математика
Лекции
-
Усиленный поток
Лекции и семинары в усиленном потоке доступны на странице А.А. Федотова
-
Основной поток
Лекции и семинары в основном потоке доступны на странице А.М. Будылина
-
Базовый поток
Дата Конспекты лекций 24.03.2020 Лекция 1 конспект 25.03.2020 Лекция 2 конспект 31.03.2020 Лекция 3 конспект 01.04.2020 Лекция 4 конспект 07.04.2020 Лекция 5 конспект 08.04.2020 Лекция 6 конспект 14.04.2020 Лекция 7 конспект 15.04.2020 Лекция 8 конспект 21.04.2020 Лекция 9 конспект 22.04.2020 Лекция 10 конспект 28.04.2020 Лекция 11 конспект 29.04.2020 Лекция 12 конспект 06.05.2020 Лекция 13 конспект 12.05.2020 Лекция 14 конспект 13.05.2020 Лекция 15 конспект 19.05.2020 Лекция 16 конспект
Семинары
Пространства Соболева и их приложения
Видеозаписи лекций
Дата | Содержание | Видео (Плэйлист) |
12.02.2021 | Введение. Предварительные сведения. Усреднение функций. Аналог основной леммы вариационного исчисления. Обобщенные производные: определение и свойства. |
Лекция 1 Видео |
15.02.2021 | Второе определение обобщенных производных. Замкнутость операции обобщенного дифференцирования. Обобщенная производная произведения функций. Замена переменных. Равенство нулю для производных. Свойство абсолютной непрерывности. Примеры обобщенных производных. | Лекция 2 Видео |
19.02.2021 | Пространства Соболева \(W_p^l(\Omega)\) и \(W_p^l(\Omega)\) «с ноликом». Определение и свойства. Пространство \(W_p^l(\mathbb{R}^n)\). Неравенство Фридрихса. | Лекция 3 Видео |
22.02.2021 | Случай звездных областей. Плотность множества гладких функций в \(W_p^l(\Omega)\). Теоремы продолжения. | Лекция 4 Видео |
26.02.2021 | Теоремы вложения: введение. Интегральные операторы в \(L_p(\Omega)\). Условия ограниченности и компактности в разных функциональных пространствах (леммы 1-5). | Лекция 5 Видео |
01.03.2021 | Интегральное представление функций из класса \(W_p^1(\Omega)\) «с ноликом». Теоремы вложения для \(W_p^1(\Omega)\) «с ноликом». Теоремы вложения для \(W_p^1(\Omega)\). Примеры и комментарии. |
Лекция 6 Видео |
05.03.2021 | Теоремы вложения для \(W_p^1(\Omega)\): примеры и комментарии. Теоремы вложения для \(W_p^l(\Omega)\). | Лекция 7 Видео |
08.03.2021 | Эквивалентные нормировки в \(W_p^l(\Omega)\). «Неравенства с \(\varepsilon\)». Пространства Соболева \(H^s(\mathbb{R}^n)\): предварительные сведения. | Лекция 8 Видео |
12.03.2021 | Пространства \(H^s(\mathbb{R}^n)\): определение и свойства. Теорема о плотности множества финитных гладких функций в \(H^s(\mathbb{R}^n)\). Дуализм \(H^s(\mathbb{R}^n)\) и \(H^{-s}(\mathbb{R}^n)\). | Лекция 9 Видео |
19.03.2021 | Теорема об эквивалентной норме в \(H^s(\mathbb{R}^n)\) при дробном \(s>0\). «Неравенства с \(\varepsilon\)». Точные теоремы о следах. | Лекция 10 Видео |
21.03.2020 | Теоремы о следах для класса \(H^s(\mathbb{R}^n)\). Теоремы о продолжении с \(\mathbb{R}^{n-1}\) в \(\mathbb{R}^n\). | Лекция 11. Часть 1 Видео |
21.03.2020 | Пространства \(H^s(\Omega)\); два подхода к их определению. Теоремы о следах. Характеристика пространства \(H^l(\Omega)\) «с ноликом». | Лекция 11. Часть 2 Видео |
28.03.2020 | Задача Дирихле для уравнения Пуассона. Свойства компактных операторов. Задача Дирихле со спектральным параметром. Разложение по собственным функциям. Вариационный принцип для нахождения собственных значений. | Лекция 12 Видео |
30.03.2020 | Задача Дирихле для равномерно эллиптического уравнения второго порядка. Энергетическое неравенство. Исследование разрешимости в классе \(H^1(\Omega)\). | Лекция 13 Видео |
03.04.2020 | Задача Дирихле для равномерно эллиптического уравнения второго порядка. Расположение спектра. Разложение по собственным функциям симметричных эллиптических операторов. Вариационный принцип для нахождения собственных значений. Задача Неймана и третья краевая задача. | Лекция 14 Видео |
06.04.2020 | Повышение гладкости решений эллиптических уравнений внутри области. | Лекция 15 Видео |
10.04.2020 | Повышение гладкости решения задачи Дирихле вплоть до границы. Теорема о разрешимости задачи Дирихле в классе \(H^2(\Omega)\). | Лекция 16 Видео |
13.04.2020 | Первая начально-краевая задача для уравнения теплопроводности. Разрешимость в классе \(H^{\Delta,1}_0(Q_T)\). | Лекция 17 Видео |
17.04.2020 | Первая начально-краевая задача для уравнения теплопроводности. Теорема единственности в классе \(L_2(Q_T)\). Энергетическое соотношение. Разрешимость в энергетическом классе. | Лекция 18 Видео |
Конспект лекций
Вопросы к экзамену
Методы математической физики
Лекции
Поток для экспериментаторов |
Поток для теоретиков |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Семинары
Дата | А.В. Баданин (плэйлист) |
24.03.2020 | Семинар 1 Видео |
26.03.2020 | Семинар 2 Видео |
03.04.2020 | Семинар 3 Видео |
10.04.2020 | Семинар 4 Видео |
15.04.2020 | Семинар 5 Видео |
21.04.2020 | Семинар 6 Видео |
24.04.2020 | Семинар 7 Видео |
29.04.2020 | Семинар 8 Видео |
06.05.2020 | Семинар 9 Видео |
13.05.2020 | Семинар 10 Видео |
20.05.2020 | Семинар 11 Видео |
Высшая алгебра
Лекции. Усиленный поток
Осенний семестр
Дата | Содержание | Видео Плэйлист |
06.09.2021 | Понятие вектора и линейные операции над векторами. Линейная зависимость векторов. Базис. Координаты. | Лекция 1 Видео |
08.09.2021 | Компонента вектора по оси. Проекция вектора на ось. Прямоугольные декартовы системы координат. Ориентация пространства. | Лекция 2 Видео |
12.09.2021 | Скалярное произведение векторов. Определители второго и третьего порядков. Понятие о псевдовекторе. Векторное произведение векторов: определение и примеры. | Лекция 3 Видео |
13.09.2021 | Свойства векторного произведения векторов. Смешанное произведение векторов. Двойное векторное произведение. | Лекция 4 Видео |
30.09.2021 | Общее уравнение прямой на плоскости. Уравнение прямой в отрезках на осях. Нормальное уравнение прямой на плоскости. Расстояние от точки до прямой. Взаимное расположение двух прямых на плоскости. Уравнение прямой с угловым коэффициентом. Каноническое и параметрические уравнения прямой на плоскости. Плоскость в пространстве: общее уравнение. | Лекция 5 Видео |
03.10.2021 | Уравнение плоскости в отрезках на осях. Нормальное уравнение плоскости. Расстояние от точки до плоскости. Взаимное расположение двух плоскостей. Прямая в пространстве: общие, канонические и параметрические уравнения прямой. Взаимное расположение двух прямых в пространстве. Взаимное расположение прямой и плоскости. | Лекция 6 Видео |
14.10.2021 | Окружность и эллипс. Гипербола. | Лекция 7 Видео |
17.10.2021 | Парабола. Преобразование декартовых координат на плоскости. Преобразование общего уравнения второй степени на плоскости. | Лекция 8 Видео |
23.10.2021 | Преобразование декартовых ортогональных координат в трехмерном пространстве. Раздел 2. Линейная алгебра. Действия над матрицами. | Лекция 9 Видео |
29.10.2021 |
Свойства действий над матрицами.
Квадратные матрицы.
|
Лекция 9 (окончание) Видео |
16.11.2020 | Квадратные матрицы. След. Одностолбцовые матрицы. Координатные пространства. Линейные отображения. | Лекция 10 Видео |
20.11.2020 | Перестановки и подстановки. Определители: определение и свойства. | Лекция 11 Видео |
23.11.2020 | Миноры и алгебраические дополнения. Примеры вычисления определителей. Теорема об определителе произведения матриц. | Лекция 12 Видео |
27.11.2020 | Обратная матрица. Формулы Крамера. | Лекция 13 Видео |
30.11.2020 | Ранг прямоугольной матрицы. Теорема о ранге. | Лекция 14 Видео |
04.12.2020 | Системы линейных алгебраических уравнений. Общие свойства. Однородные системы линейных алгебраических уравнений. | Лекция 15 Видео |
07.12.2020 | Неоднородные системы линейных алгебраических уравнений. Системы линейных алгебраических уравнений с квадратной матрицей. Квадратные матрицы: характеристический многочлен и спектр. | Лекция 16 Видео |
11.12.2020 | Функции от квадратных матриц. Тождество Кэли. Подобие и диагонализуемость. | Лекция 17 Видео |
14.12.2020 | Специальные классы матриц. | Лекция 18 Видео |
Весенний семестр
Учебно-методическое пособие ЛИНЕЙНАЯ АЛГЕБРА II СЕМЕСТР
Выпуск 1, Выпуск 2, Выпуск 3, Выпуск 4, Выпуск 5
Дата | Содержание | Видео Плэйлист |
11.02.2021 | Множества с бинарной операцией. Нейтральный элемент. Обратный элемент. Группы, кольца. | Лекция 1 Видео |
15.02.2021 | Поля. Понятие изоморфизма. Изоморфизм групп и колец. Аксиоматика линейного пространства. Примеры. | Лекция 2 Видео |
18.02.2021 | Изоморфизм линейных пространств. Понятия линейной зависимости и линейной независимости. Базисы, координаты. Размерность линейного пространства. Изоморфизм конечномерных линейных пространств. | Лекция 3 Видео |
25.02.2021 | Подпространства. Линейная оболочка множества. Пересечение подпространств. Линейная сумма подпространств, прямая сумма подпространств. Теорема о размерности линейной суммы подпространств. | Лекция 4 Видео |
01.03.2021 | Прямое дополнение подпространства. Линейные операторы в конечномерных линейных пространствах. Определение и примеры. Действия над операторами. Пространство линейных операторов из E в F. Композиция операторов и ее свойства. Кольцо линейных операторов в пространстве E. Матричное изображение линейных операторов. Изоморфизм пространства операторов и пространства матриц. Изображающая матрица композиции операторов. Примеры изображающих матриц. | Лекция 5 Видео |
08.03.2021 | Изоморфизм кольца операторов в пространстве E и кольца матриц. Образ и ранг линейного оператора. Ядро линейного оператора. Обратный оператор. Типы линейных отображений. Альтернатива Фредгольма. | Лекция 6 Видео |
19.03.2020 | Преобразование базисов, координат и изображающих матриц линейных операторов. Определитель и след линейного оператора. Ориентация в вещественном конечномерном линейном пространстве. Характеристический многочлен и спектр линейного оператора. Алгебраические кратности собственных значений. | Лекция 7 Видео |
23.03.2020 | Собственные элементы и собственные подпространства линейных операторов. Геометрические кратности собственных значений. Теорема об алгебраической и геометрической кратности собственного значения. Прямая сумма собственных подпространств. Критерий существования собственного базиса. Диагонализуемые операторы. Диагонализуемые матрицы. | Лекция 8 Видео |
26.03.2020 | Функции от операторов. Тождество Кэли. | Лекция 9 Видео |
02.04.2020 | Линейные формы. Двойственное пространство. Двойственные базисы. Второе двойственное пространство. Преобразования двойственных базисов и координат в E’. Преобразования изображающих матриц операторов из E’ в E’, из E в E’, из E’ в E. | Лекция 10 Видео Часть 1 Часть 2 |
06.04.2020 | Билинейные формы. Определение, примеры. Пространство билинейных форм. Оператор билинейной формы. Изображающая матрица билинейной формы. Преобразование изображающих матриц билинейной формы. Ядро и ранг билинейной формы. Транспонирование билинейной формы. Симметричные и антисимметричные билинейные формы. | Лекция 11 Видео |
09.04.2020 | Квадратичная форма. Приведение симметричной билинейной формы к простейшему виду (приведение квадратичной формы к сумме квадратов). | Лекция 12 Видео |
13.04.2020 | Приведение квадратичной формы к сумме квадратов: вещественный случай. Закон инерции квадратичных форм. Вещественные евклидовы пространства. Скалярное произведение векторов. Ортогональность. Норма вектора. Ортонормированные базисы. Неравенство Коши. Угол между векторами. Свойства нормы, неравенство треугольника. Процесс ортогонализации. | Лекция 13 Видео |
15.04.2020 | Ортогональная сумма подпространств в вещественном евклидовом пространстве. Ортогональное дополнение. Изоморфизм вещественных евклидовых пространств. Линейные операторы в вещественном евклидовом пространстве. Билинейная форма оператора. Взаимно-однозначное соответствие операторов и билинейных форм. Сопряженный (транспонированный) оператор. Симметричные и антисимметричные операторы. Изометрические операторы. | Лекция 14 Видео |
20.04.2020 | Преобразование ортонормированных базисов в вещественном евклидовом пространстве. Ортопроекторы. Полуторалинейные формы в комплексном линейном пространстве. Эрмитовы формы. Комплексное евклидово пространство. Скалярное произведение векторов. Ортогональность. Норма вектора. Ортонормированные базисы. Процесс ортогонализации. Неравенство Коши. Свойства нормы, неравенство треугольника. | Лекция 15 Видео |
22.04.2020 | Ортогональная сумма подпространств в комплексном евклидовом пространстве. Ортогональное дополнение. Изоморфизм комплексных евклидовых пространств. Линейные операторы в комплексном евклидовом пространстве. Полуторалинейная форма оператора. Взаимно-однозначное соответствие операторов и полуторалинейных форм. Сопряженный оператор. Теорема об образе оператора и ядре сопряженного оператора. Ортопроекторы. Самосопряженные операторы. | Лекция 16 Видео |
27.04.2020 | Унитарные операторы. Преобразование ортонормированных базисов в комплексном евклидовом пространстве. Диагонализация самосопряженного оператора в комплексном евклидовом пространстве. Диагонализация симметричного оператора в вещественном евклидовом пространстве. Спектральное разложение самосопряженного оператора. | Лекция 17 Видео |
29.04.2020 | Диагонализация унитарного оператора в комплексном евклидовом пространстве. Диагонализация эрмитовых матриц. Диагонализация вещественных симметричных матриц. Диагонализация унитарных матриц. Приведение квадратичной формы к сумме квадратов ортогональным преобразованием. Применение к классификации поверхностей второго порядка. | Лекция 18 Видео |
07.05.2020 | Положительно определенные операторы в комплексном евклидовом пространстве. Обобщенная задача на собственные значения. Аналогичная задача в вещественном евклидовом пространстве. Приведение эрмитовой формы к простейшему виду (в комплексном евклидовом пространстве). Одновременное приведение двух эрмитовых форм к простейшему виду. Вещественный случай: одновременное приведение двух симметричных форм к простейшему виду. Понятие о жордановой форме. Формулировка теоремы о жордановой форме. | Лекция 19 Видео |
11.05.2020 | Вспомогательные сведения: взаимно-простые многочлены, лемма о нильпотентном операторе. Корневые подпространства линейного оператора. Теорема разложения по корневым подпространствам. | Лекция 20 Видео |
14.05.2020 | Жорданова форма для нильпотентного оператора. Завершение доказательства теоремы о жордановой форме. | Лекция 21 Видео |
Вопросы к экзамену |
Лекции. Основной поток
Дата | Конспект лекции |
19.03.2020 | Лекция 1 Конспект |
23.03.2020 | Лекция 2 Конспект |
26.03.2020 | Лекция 3 Конспект |
30.03.2020 | Лекция 4 Конспект |
02.04.2020 | Лекция 5 Конспект |
Лекции. Общий поток
Дата | Конспект лекции |
19.03.2020 | Лекция 1 Конспект |
23.03.2020 | Лекция 2 Конспект |
26.03.2020 | Лекция 3 Конспект |
30.03.2020 | Лекция 4 Конспект |
02.04.2020 | Лекция 5 Конспект |
09.04.2020 | Лекция 6 Конспект |
13.04.2020 | Лекция 7 Конспект |
16.04.2020 | Лекция 8 Конспект |
23.04.2020 | Лекция 9 Конспект |
30.04.2020 | Лекция 10 Конспект |
07.05.2020 | Лекция 11 Конспект |
11.05.2020 | Лекция 12 Конспект |
14.05.2020 | Лекция 13 Конспект Поверхности |
Результаты экзамена 2 курса
Появились результаты экзамена по Высшей математике 2 курса (18.06.2018), усиленный поток, лектор А.А. Федотов.
Вниманию студентов 2-го курса.
Появились результаты экзамена на втором курсе в общем потоке. Апелляция – во вторник, 14-го июня.
Появились результаты экзамена на втором курсе в теоретическом потоке. Апелляция – во вторник, 14-го июня, 13:00, встреча в фойе физического факультета.
Результаты коллоквиума 2 курс
Появились результаты коллоквиума по высшей математике, второй курс, теоретический поток.
Апелляция у теоретического потока будет на первой лекции (или после нее).
У практического потока специальной апелляции по коллоквиуму нет, но в течение двух-трех недель после коллоквиума желающие могут персонально договориться с А.М. Будылиным об апелляции.