Tag Archives: Периодические операторы

Семинар 28 ноября

28 ноября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 106.

Докладчик: Марк Дородный

Тема: Усреднение уравнений типа Шрёдингера с периодическими коэффициентами при включении членов младшего порядка.

Аннотация.

Семинар 28 марта

28 марта в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Д.И. Борисов

Тема: О гипотезе Бете-Зоммерфельда для периодических операторов в полосе

Аннотация

Доклад посвящен обсуждению гипотезы Бете-Зоммерфельда для периодических операторов в плоских полосах. В качестве оператора выбирается оператор Шредингера с периодическим потенциалом, периодический магнитный оператор, Лапласиан с периодической сменой краевых условий. В основном будет обсуждаться ослабленная версия гипотезы об отсутствии внутренних лакун в нижней части спектра для достаточно малых периодов. Для периодического оператора Шредингера будут также обсуждена классическая гипотеза Бете-Зоммерфельда о конечном числе лакун и усиленная гипотеза о полном отсутствии лакун для достаточно малых периодов.

Семинар 22 ноября

22 ноября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: А.А. Федотов

Тема: О минимальных целых решениях одномерного разностного
уравнения Шредингера с потенциалом \(v(z)=e^{-2\pi iz}\)

Аннотация
Пусть \(z\in \mathbb C\) — комплексная переменная, а \(h\in(0,1)\) и
\(p\in\mathbb C\) — параметры. Рассматривается уравнение

\[\psi(z+h)+\psi(z-h)+e^{-2\pi iz}\psi(z)=2\cos(2\pi p)\psi(z).\]

Одномерные разностные уравнения с периодическими коэффициентами
возникают в разных областях физики и, в частности, в теории дифракции
и в физике твердого тела. Их богатые спектральные свойства привлекают
и математиков, и физиков.

Обсуждаемое уравнение интересно как разностное уравнение
Шредингера с простейшим комплексным периодическим потенциалом.
Кроме того, оно естественно возникает при построении целых решений
разностных уравнений Шредингера

\[\psi(z+h)+\psi(z-h)+\lambda v(z)\psi(z)=E\psi(z)\]

с потенциалом \(v\), являющимся нетривиальным тригонометрическим
полиномом, вещественным на вещественной оси, в случае малой константы
связи \(\lambda\) и/или большого по абсолютной величине спектрального
параметра \(E\)

Мы обсудим конструкцию и аналитические свойства целых решений
рассматриваемого уравнения, обладающих минимальным возможным
ростом одновременно при \(Im z\to\pm \infty\). В частности, будет показано,
что они удовлетворяют еще одному уравнению:

\[\psi(z+1)+\psi(z-1)+e^{-2\pi iz/h}\psi(z)=2\cos(2\pi p/h)\psi(z).\]

Семинар 25 октября

25 октября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Е.Л. Коротяев

Тема: Операторы Шредингера, периодические в октантах

Аннотация
В первой четверти плоскости рассматриваются операторы Шредингера с периодическими потенциалами и краевыми условиями Дирихле. Устанавливается, что для любого целого числа N и любого интервала A существует такой периодический потенциал, что у соответствующего оператора Шредингера на этом интервале спектр является дискретным и состоит из N собственных значений (с учетом кратности), а слева и справа от A есть существенный спектр.
Аналогичные результаты доказываются для операторов Шредингера в октантах произвольной размерности и в областях другой формы. Доказательство основано на теории обратной спектральной задачи для операторов Хилла на вещественной оси. Доклад основан на результатах, полученных совместно с Jacob Schach Moller, Denmark.

Семинар 4 октября

4 октября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Федотов А.А.

Тема: Матрица монодромии для уравнения почти-Матье с малой константой связи

Аннотация
В рамках метода монодромизации – перенормировочного подхода, предложенного В.С.Буслаевым и А.А.Федотовым для анализа на вещественной оси разностных уравнений с периодическими коэффициентами, – исследуется оператор почти-Матье с малой константой связи. Описаны асимптотики первой матрицы монодромии и полученные с их помощью асимптотики последовательности спектральных лакун.

Семинар 26 апреля

26 апреля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.
Докладчик: А.В. Баданин (совместная работа с Е.Л. Коротяевым)
Тема: Операторы 4-го порядка с периодическими коэффициентами на оси.
Аннотация
Обзор результатов по спектральной теории операторов 4-го порядка с периодическими коэффициентами на оси, полученных авторами в серии работ, начиная с 2005 г.

Семинар 12 апреля

12 апреля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Наталья Сабурова

Тема: Оператор Лапласа на периодических дискретных графах с волноводами

Аннотация
Рассматривается оператор Лапласа на периодических дискретных графах, возмущенных волноводами, т.е. графами, которые являются периодическими по одним направлениям, и конечными – по другим.
Известно, что спектр оператора Лапласа на невозмущенном периодическом графе представляет собой объединение конечного числа невырожденных зон, и, быть может, конечного числа собственных значений бесконечной кратности. Показывается, что спектр оператора Лапласа на возмущенном графе состоит из спектра невозмущенного оператора и дополнительного спектра, также представляющего собой объединение конечного числа зон. Получена локализация зон дополнительного спектра в терминах геометрических параметров графа. Найдены асимптотики зон дополнительного спектра при больших кратностях ребер возмущающего графа. Показано, что мера Лебега дополнительного спектра, возможное число его зон, а также их положение могут быть достаточно произвольными. Доказательство основано на разложении оператора в прямой интеграл и явном представлении оператора в слое. Результаты получены совместно с профессором Коротяевым Е.Л.

Доклад Т.А. Суслиной на семинаре лаборатории Чебышева

21 сентября в 11:00 состоится доклад Т.А. Суслиной
“Спектральный подход к гомогенизации периодических дифференциальных операторов”.

Место проведения: лаборатория Чебышева, 14 линия В.О., дом 29Б, ауд. 413Объявление о докладе на сайте лаборатории. 

Приглашаются все желающие!

Семинар 11 мая

11 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

 Докладчик  Наталья Сабурова.
Тема Магнитный оператор Шрёдингера на периодических дискретных графах.
Аннотация.
Рассматривается оператор Шрёдингера с периодическими магнитным и электрическим потенциалами на периодических дискретных графах. Известно, что спектр оператора состоит из абсолютно непрерывной части, представляющей собой объединение конечного числа невырожденных зон, и, быть может, конечного числа собственных значений бесконечной кратности. Получена оценка меры Лебега спектра оператора через геометрические параметры графа (числа Бетти). Показывается, что данная оценка становится точной для некоторого специального класса графов. Оценивается изменение спектра оператора Шрёдингера при возмущении магнитным полем в терминах магнитных потоков. Доказательство основано на теории Флоке и полученном в работе представлении оператора в слое.

Семинар 2 марта

2 марта в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, Средний пр. 41/43, ауд. 304

Докладчик Екатерина Щетка

Тема Комплексный метод ВКБ для разностных уравнений в неограниченных областях. Continue reading