25 октября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.
Докладчик: Е.Л. Коротяев
Тема: Операторы Шредингера, периодические в октантах
Аннотация
В первой четверти плоскости рассматриваются операторы Шредингера с периодическими потенциалами и краевыми условиями Дирихле. Устанавливается, что для любого целого числа N и любого интервала A существует такой периодический потенциал, что у соответствующего оператора Шредингера на этом интервале спектр является дискретным и состоит из N собственных значений (с учетом кратности), а слева и справа от A есть существенный спектр.
Аналогичные результаты доказываются для операторов Шредингера в октантах произвольной размерности и в областях другой формы. Доказательство основано на теории обратной спектральной задачи для операторов Хилла на вещественной оси. Доклад основан на результатах, полученных совместно с Jacob Schach Moller, Denmark.