5 декабря в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 106.
Докладчик: Юлия Ершова
Тема: Гомогенизация критического контраста в квазиодномерных средах и среды с временной дисперсией. I и II.
Аннотация
В первой части рассказа будут введены все необходимые объекты и вспомогательные приемы, как-то: периодический в одном направлении квантовый граф с критическим контрастом, преобразование Гельфанда на нем, теория граничных троек в применении к симметричным операторам с равными и конечными дефектными числами, возникающим при рассмотрении квантовых графов, матричные М-матрицы Вейля-Титчмарша и резольвентная формула Крейна, применимая в этом случае. Если позволит время, будет также освещена классическая теория Неймарка-Штрауса, относящаяся к самосопряженным внепространственным “дилатациям” импедансных краевых задач.
Во второй части на указанной выше базе будет получено полное решение задачи гомогенизации критического контраста в периодическом вдоль одной оси квантовом графе (квазиодномерной структуре) и показано, как отсюда получается эффективная среда с частотной (временной) дисперсией. Будет также обсуждено возникновение либо в главном члене, либо в корректоре соответствующей асимптотики пространственной дисперсии.
Доклад основан на работе: Cherednichenko, K.D., Ershova, Yu. and Kiselev, A.V., 2018. Unified approach to critical-contrast homogenisation with explicit links to time-dispersive media, arXiv: 1805.00884, submitted: Archive for Rational Mechanics and Analysis.