Tag Archives: Теория усреднения

Семинар 27 ноября

27 ноября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Т.А.Суслина

Тема: Усреднение эллиптических операторов высокого порядка с периодическими коэффициентами.

Абстракт:
Доклад посвящен усреднению эллиптических операторов высокого порядка 2p с периодическими быстро осциллирующими коэффициентами. Рассматривается как задача во всем пространстве, так и задача в ограниченной области при краевых условиях Дирихле либо Неймана. Основные результаты: аппроксимации резольвенты рассматриваемого оператора в различных операторных нормах с оценками погрешности, зависящими от двух параметров — малого периода и спектрального параметра.

Семинар 5 декабря

5 декабря в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 106.  

Докладчик: Юлия Ершова

Тема: Гомогенизация критического контраста в квазиодномерных средах и среды с временной дисперсией. I и II.

Аннотация

В первой части рассказа будут введены все необходимые объекты и вспомогательные приемы, как-то: периодический в одном направлении квантовый граф с критическим контрастом, преобразование Гельфанда на нем, теория граничных троек в применении к симметричным операторам с равными и конечными дефектными числами, возникающим при рассмотрении квантовых графов, матричные М-матрицы Вейля-Титчмарша и резольвентная формула Крейна, применимая в этом случае. Если позволит время, будет также освещена классическая теория Неймарка-Штрауса, относящаяся к самосопряженным внепространственным “дилатациям” импедансных краевых задач.

Во второй части на указанной выше базе будет получено полное решение задачи гомогенизации критического контраста в периодическом вдоль одной оси квантовом графе (квазиодномерной структуре) и показано, как отсюда получается эффективная среда с частотной (временной) дисперсией. Будет также обсуждено возникновение либо в главном члене, либо в корректоре соответствующей асимптотики пространственной дисперсии.

Доклад основан на работе: Cherednichenko, K.D., Ershova, Yu. and Kiselev, A.V., 2018. Unified approach to critical-contrast homogenisation with explicit links to time-dispersive media, arXiv: 1805.00884, submitted: Archive for Rational Mechanics and Analysis.

Семинар 28 ноября

28 ноября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 106.

Докладчик: Марк Дородный

Тема: Усреднение уравнений типа Шрёдингера с периодическими коэффициентами при включении членов младшего порядка.

Аннотация.

Семинар 3 октября

3 октября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Т.А. Суслина

Тема: Усреднение стационарной системы Максвелла с периодическими коэффициентами

Семинар 13 декабря

13 декабря в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Н. Сеник

Тема: Об усреднении эллиптических локально периодических операторов

Аннотация
В докладе будет рассмотрена задача усреднения для матричного силь-
но эллиптического оператора Aε = −div A(x,x/ε) ∇ в пространстве Rᵈ.
Функция A предполагается периодической по второму аргументу, так
что при малых ε коэффициенты этого оператора быстро осциллируют.
Нас интересует, как ведет себя его резольвента в различных опера-
торных нормах, когда параметр ε стремится к 0. Ранее подобный воп-
рос изучался для случая липшицевых по первому аргументу функций A;
сейчас мы ослабим гладкость до гёльдеровой с показателем 0⩽s<1.

Семинар 29 ноября

29 ноября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Мешкова Юлия

Тема: Усреднение периодических гиперболических систем при учете корректора

Аннотация
Доклад относится к теории усреднения периодических дифференциальных операторов. Нас интересует аппроксимация решений гиперболических систем в пределе малого периода (с оценкой погрешности операторного типа). Приближение решений по \(L_2\)-норме (с операторной оценкой) получено М. Ш. Бирманом и Т. А. Суслиной (2008). Наш основной результат – аппроксимация решения по энергетической норме при учете корректора. При этом приходится дополнительно предполагать, что начальное данное для решения нулевое (а для производной решения по времени – из класса Соболева \(H^2\)). Для доказательства используется спектральный подход к задачам усреднения, развитый М. Ш. Бирманом и Т. А. Суслиной.

Семинар 22 марта

22 марта в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Никита Сеник

Тема: Об усреднении локально периодических сильно эллиптических операторов

Семинар 19 октября

19 октября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.
 
Докладчик: Юлия Мешкова

Тема: Операторные оценки погрешности при усреднении эллиптических и параболических систем.

Аннотация

Доклад основан на совместной с Суслиной Т. А. работе.
Изучается матричный эллиптический дифференциальный оператор \(B_\varepsilon\) второго порядка, действующий в ограниченной области при условии Дирихле на границе. Оператор \(B_\varepsilon\) самосопряженный и положительно определенный. Его коэффициенты периодические и зависят от \(x/\varepsilon\), \(0<\varepsilon\leqslant 1\). Т.о. при малых \(\varepsilon\) коэффициенты быстро осциллируют. Нас интересует поведение в пределе малого периода резольвенты оператора \(B_\varepsilon\). Для \((B_\varepsilon -\zeta I)^{-1}\) получены аппроксимации по \((L_2\rightarrow L_2)\)- и \((L_2\rightarrow H^1)\)-операторным нормам с двухпараметрическими (относительно \(\varepsilon\) и \(\zeta\)) оценками погрешности. Отслеживание в оценках зависимости от спектрального параметра позволяет получить аппроксимации операторной экспоненты \(\exp (-B_\varepsilon t)\), \(t>0\), как простое следствие. Операторные оценки применяются к усреднению решений эллиптических и параболических систем.

Доклад Т.А. Суслиной на семинаре лаборатории Чебышева

21 сентября в 11:00 состоится доклад Т.А. Суслиной
“Спектральный подход к гомогенизации периодических дифференциальных операторов”.

Место проведения: лаборатория Чебышева, 14 линия В.О., дом 29Б, ауд. 413Объявление о докладе на сайте лаборатории. 

Приглашаются все желающие!

Сеник Никита Николаевич

OLYMPUS DIGITAL CAMERA

кандидат физико-математических наук

PURE СПбГУ

 Научные интересы

  • теория усреднений дифференциальных операторов
  • дифференциальные операторы в частных производных

Резюме