Семинар 3 мая

3 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: А.А. Федотов

Тема: Квазиклассические асимптотики функций Малюженца

Аннотация
Пусть \(h\) — фиксированное положительное число. Мы будем обсуждать решения уравнения
\[
\sigma(z+h)=(1+e^{-iz})\sigma(z-h),\qquad\qquad (1)
\]
на комплексной плоскости переменной \(z\). Это уравнение введено в рассмотрение в работе В.Буслаева и А.Федотова (2001), где изучались решения разностных уравнений второго порядка с периодическими коэффициентами, интерес к которым возник в связи с задачами из физики твердого тела. Позже оказалось, что родственные уравнения возникали при исследовании разных аналитических задач. В теории дифракции хорошо известно уравнение Малюжинца \(\psi(z+h)=\cot(z/2+\pi/4)\psi(z-h)\). Его решения начали изучаться Малюжинцом в 1958 году. Родственные уравнения были введены и независимо изучались в работах Бобровникова и Фирсанова (1988), Фаддеева, Кашаева и Волкова (2001) и Ruigsenaars’a (2000). Решения всех этих уравнений связаны друг с другом простыми соотношениями, и мы ограничимся обсуждением (1). Мы опишем асимптотики решений этого уравнения при \(h\to0\). Поскольку формально \(f(x+h)=\exp(h\frac{d}{dx}) f(x)\), эти асимптотики естественно считать квазиклассическими.

Leave a Reply

Your email address will not be published. Required fields are marked *