Семинар 30 ноября

30 ноября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Андрей Комеч, ИППИ (Москва) и Texas A&M University

Тема доклада: Stability of solitary waves in the nonlinear Dirac equation

Аннотация:
We consider the point spectrum of non-selfadjoint Dirac operators which arise as linearizations at solitary wave solutions to the nonlinear Dirac equation. It is known (Barashenkov-Pelinovsky-Zemlyanaya, PhysRevLett.80.5117) that point eigenvalues could emerge from the essential spectrum, bifurcating from the embedded thresholds. We prove the following additional results:

1. Eigenvalues can not bifurcate from the region of the essential spectrum beyond the embedded thresholds;

2. Eigenvalues can be born from the essential spectrum before the embedded thresholds, but only from embedded eigenvalues. We give an example of such bifurcations.

We use these results to prove that in the nonrelativistic limit (\omega\lesssim m) the solitary waves in the Dirac equation with scalar-type self-interaction (“Soler model”) with “NLS-subcritical” nonlinearity are spectrally stable.

Results are based on the article “On spectral stability of the nonlinear Dirac equation” (with Nabile Boussaid), JFA-2016, http://arxiv.org/abs/1211.3336

Leave a Reply

Your email address will not be published. Required fields are marked *