Доцент, к.ф.-м.н.
Научные интересы
- Асимптотические методы в применении к задачам квантовой механики, оптики, теории волноводов (акустических, упругих, электромагнитных), фотонным кристаллам.
- Разработка методов непрерывного вейвлет-анализа для решения дифференциальных уравнений
Основные публикации
- Jorstad, S. G. et al (2022). Rapid quasi-periodic oscillations in the relativistic jet of BL Lacertae. Nature, 609(7926), 265-268.
- Gorodnitskiy, E. A., & V. Perel, M. (2022). The Wavelet-Based Integral Formula for the Solutions of the Wave Equation in an Inhomogeneous Medium: Convergence of Integrals. In Integral Methods in Science and Engineering: Applications in Theoretical and Practical Research (pp. 113-125). Cham: Springer International Publishing.
- Perel, M. V. (2022, May). Asymptotic analysis of tunneling through the potential barrier in graphene placed in a magnetic field. In 2022 Days on Diffraction (DD) (pp. 1-4). IEEE.
- Gorodnitskiy, E. A., & Perel, M. V. (2021, May). Rigorous mathematical formulation for quasiphotons. A priori estimates. In 2021 Days on Diffraction (DD) (pp. 69-73). IEEE.
- Perel, M. V. (2021). Quasiphotons for the Nonstationary 2D Dirac Equation. Journal of Mathematical Sciences, 252, 687-694.
- Fialkovsky, I., & Perel, M. (2020). Mode transformation for a Schrödinger type equation: Avoided and unavoidable level crossings. Journal of Mathematical Physics, 61(4), 043506.
- Kuydin, V. V., & Perel, M. V. (2019, June). Gaussian beams for 2D Dirac equation with an electromagnetic field. In 2019 Days on Diffraction (DD) (pp. 111-116). IEEE.
- Perel, M. V., & Gorodnitskiy, E. A. (2019). Decomposition of Solutions of the Wave Equation into Poincare Wavelets. In Integral Methods in Science and Engineering (pp. 343-352). Birkhauser, Cham.
- Gorodnitskii, E. A., & Perel’, M. V. (2017). Justification of the wavelet-based integral representation of a solution of the wave equation. Zapiski Nauchnykh Seminarov POMI, 461, 107-123.
- Gorodnitskiy, E., Perel, M., Geng, Y., & Wu, R. S. (2016). Depth migration with Gaussian wave packets based on Poincare wavelets. Geophys. J. Int., 205(1), 314-331.
- Fialkovsky, I. V., Perel, M. V., & Plachenov, A. B. (2014). On astigmatic exponentially localized solutions for the wave and the Klein–Gordon–Fock equations. J. Math. Phys., 55(11), 112902.
- Maria Perel and Evgeny Gorodnitskiy (2012) Integral representations of solutions of the wave equation based on relativistic wavelets J. Phys. A: Math. Theor. 45 385203 ?
- Sidorenko, M. S., & Perel, M. V. (2012). Analytic approach to the directed diffraction in a one-dimensional photonic crystal slab. Phys. Rev. B, 86(3), 035119.
- Perel, M. V., & Zaika, D. Y. (2011). Asymptotics of surface plasmons on curved interface. In Proceedings of the International Conference Days on Diffraction 2011 (pp. 149-156). IEEE.
- Perel, M. V., & Sidorenko, M. S. (2009). Wavelet-based integral representation for solutions of the wave equation. J. Phys. A: Math. Theor., 42(37), 375211.
- Maria V Perel and Mikhail S Sidorenko (2007) New physical wavelet ‘Gaussian wave packet’ J. Phys. A: Math.Theor., 40(13), 3441.
- Perel, M. V., Kaplunov, J. D., and Rogerson, G. A. (2005) Asymptotic theory of the internal reflection of modes in the varying elastic wave guide, Wave Motion, 41(2), pp. 95-108.
- Perel M.V., Fialkovsky I.V.(2003) Exact Exponentially Localized Solutions to the Klein-Gordon Equation J. Math. Sci., 117(2), pp. 3994-4000 (7) Kluwer Academic Publishers (Engl. transl. from Zapiski nauch. sem. POMI, 245, p.187-198, 2001)
- Perel’, M. V., Fialkovskii, I. V., & Kiselev, A. P. (2000). Resonance interaction of bending and shear modes in a non-uniform Timoshenko beam. Zapiski Nauchnykh Seminarov POMI, 264, 258-284.
- A.P. Kiselev, M.V. Perel (2000) Highly localized solutions of the wave equation, J. Math. Phys. 41(4), 1934–1955.
- Perel, M. V., & Stesik, O. L. (1997). Numerical simulation of cycle slipping in diurnal variation of phase of VLF field. Radio Science, 32(1), 199-217.
- Perel’, M. V. (1990). Overexcitation of modes in an anisotropic earth-ionosphere waveguide on transequatorial paths in the presence of two close degeneracy points. Radiophysics and Quantum Electronics, 33(11), 882-889.
- BUSLAEV, V., & PEREL, M. (1986). Influence of the velocity profile near the surface on the structure of a deep-sea sound field. SOVIET PHYSICS ACOUSTICS-USSR, 32(3), 181-184.
- BUSLAEV, V., & PEREL, M. (1984). Aсoustic field structure in deep sea at small depths and long-range. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, (4), 9-17.
Преподавание
- Асимптотические методы в теории обыкновенных дифференциальных уравнений (4-ый курс, 1 семестр)
- Лучевой метод (4-ый курс, 2 семестр)
- Преддипломный семинар для бакалавров
Руководство научной работой студентов и аспирантов
- М.С. Сидоренко, защита канд.диссертации 13 окт. 2016 г.