Grigori Rozenblum

CHALMERS, SPBU, EIMI, SIRIUS Lieb-Thirring estimates for Schrödinger operators with singular measures as potential

L–T estimates for the Schrödinger operator $-\Delta - V$ in \mathbb{R}^d concern the sum of powers of moduli of negative eigenvalues, $LT_{\gamma}(V) = \sum_j |\lambda_j|^{\gamma}$. The standard L-T estimate has the form

$$LT_{\gamma}(V) \leq \mathcal{L}_{\gamma,d} \int V_{+}(x)^{\frac{d}{2}+\gamma} dx,$$

which holds for $\gamma \geq 0$, d > 2; $\gamma > 0$, d = 2; $\gamma \geq \frac{1}{2}$, d = 1. These estimates play important role in the spectral theory of quantum, especially many-particle, systems and were being under active development during latest 50 years. In the talk we discuss some recent results on the L–T inequalities for Schrödinger-like operators with potential V replaced by a measure $V\mu$, where μ is a measure singular with respect to the Lebesgue measure and V is a μ -measurable function. Typical measures μ in this setting are the surface measure on a Lipschitz surface of dimension s in \mathbb{R}^d or the Hausdorff measure on a fractal set. The general estimate for the operator $(-\Delta)^l - V(x)\mu$ has the form

$$\sum_{j} |\lambda_{j}|^{\gamma} \leq \mathcal{L}_{\gamma,d,l} \int V_{+}(x)^{\theta} \mu(dx), \ \theta = \frac{s+2l\gamma}{s-d+2l},$$

where s is the dimensional characteristic of the measure μ .