
ARTICLE IN PRESS
JID:BULSCI AID:2223 /FLA [m1+; v 1.68; Prn:13/12/2006; 11:11] P.1 (1-18)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45

46

47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

Bull. Sci. math. ••• (••••) •••–•••
www.elsevier.com/locate/bulsci

Dirichlet to Neumann operator on differential forms

Mikhail Belishev a,∗,1, Vladimir Sharafutdinov b,2

a Petersburg Department of Steklov Institute of Mathematics, 27, Fontanka, St. Petersburg, 191023, Russia
b Sobolev Institute of Mathematics, 4, Koptjug Avenue, Novosibirsk, 630090, Russia

Received 21 September 2005

Abstract

We define the Dirichlet to Neumann operator on exterior differential forms for a compact Riemannian
manifold with boundary and prove that the real additive cohomology structure of the manifold is determined
by the DN operator. In particular, an explicit formula is obtained which expresses Betti numbers of the
manifold through the DN operator. We express also the Hilbert transform through the DN map. The Hilbert
transform connects boundary traces of conjugate co-closed forms.
© 2006 Published by Elsevier Masson SAS.

1. Introduction

Throughout the paper, M is a connected compact oriented Riemannian C∞-manifold of di-
mension n with nonempty boundary ∂M . Let � :C∞(M) → C∞(M) be the Laplace–Beltrami
operator. The classical Dirichlet to Neumann (DN) map Λcl :C∞(∂M) → C∞(∂M) is defined
by Λclϕ = ∂ω/∂ν, where ω is the solution to the Dirichlet problem{

�ω = 0,

ω|∂M = ϕ
(1.1)

and ν is the unit outer normal to the boundary. We use the term “classical DN map” and nota-
tion Λcl in order to make a distinction between this operator and the generalization Λ defined
below.
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In the scope of inverse problems of reconstructing a manifold from boundary measurements,
the following question is of great theoretical and applied interest: to what extent are the topol-
ogy and geometry of M determined by the DN map? It is proved in the two-dimensional case
that M is determined by Λcl up to a conformal equivalence [1,5]. There is the conjecture that Λcl
determines M up to an isometry in the case of n � 3. The latter is proved for real analytic man-
ifolds [6]. In the general case, it is proved that the boundary C∞-jet of the metric is determined
by Λcl for n � 3 [7].

In [1], an explicit formula is obtained which expresses the Euler characteristic of M

through Λcl in the case of a two-dimensional M with a connected boundary. The Euler char-
acteristic completely determines the topology of M in the latter case. In the three-dimensional
case, the vector DN map

−→
Λ :C∞(T (∂M)) → C∞(T (∂M)) is defined on the space of vector

fields in [2], and some formulas are obtained which express the Betti numbers β1(M) and β2(M)

in terms of Λcl and
−→
Λ.

Here we present a multidimensional generalization of the latter results. We define a DN map
on the space of differential forms of all degrees and express Betti numbers in terms of the map.
As well as in the case of n = 2,3; the background of our formula is the Friedrichs decomposition
of the space of harmonic fields. We also consider the Hilbert transform on differential forms and
express it in terms of the DN map.

2. Preliminaries

Here, following [8] and mostly adhering to notations of this book, we recall some known facts
on differential forms.

Let Ωk(M) be the space of smooth real exterior differential forms of degree k and Ω(M) =⊕n
k=0 Ωk(M), the graded algebra of all forms. We use the following standard operators on

Ω(M): the differential d , codifferential δ, Laplace operator � = dδ + δd , and Hodge star �.
Recall the relations

�� = (−1)k(n−k), �δ = (−1)kd�, �d = (−1)k+1δ � on Ωk(M).

The L2-product on Ω(M) is defined by (α,β) = ∫
M

α∧�β under the agreement that
∫
M

ϕ = 0
for ϕ ∈ Ωk(M) with k < n. Recall Green’s formula

(dα,β) − (α, δβ) =
∫

∂M

i∗(α ∧ �β),

where i : ∂M → M is the embedding. For α ∈ Ω(M), the form i∗α will be sometimes called the
boundary trace of α.

Elements of the space

Hk(M) = {
λ ∈ Ωk(M) | dλ = 0, δλ = 0

}
are named harmonic fields. Recall the L2-orthogonal Hodge–Morrey decomposition

Ωk(M) = Ek(M) ⊕ Ck(M) ⊕Hk(M).

Here

Ek(M) = {
dα | α ∈ Ωk−1(M), i∗α = 0

}
and

Ck(M) = {
δα | α ∈ Ωk+1(M), i∗(�α) = 0

}
.

Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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There are two finite dimensional subspaces distinguished in Hk(M)

Hk
D(M) = {

λ ∈ Hk(M) | i∗λ = 0
}
,

Hk
N (M) = {

λ ∈Hk(M) | i∗(�λ) = 0
}

whose elements are named Dirichlet and Neumann harmonic fields respectively. Dimensions of
these spaces are expressed by

dimHk
N (M) = dimHn−k

D (M) = βk(M),

where βk(M) is the kth Betti number. There are two L2-orthogonal Friedrichs decompositions

Hk(M) = Hk
D(M) ⊕Hk

co(M), Hk(M) = Hk
N (M) ⊕Hk

ex(M).

Here

Hk
ex(M) = {

λ ∈Hk(M) | λ = dα
}
, Hk

co(M) = {
λ ∈ Hk(M) | λ = δα

}
are the spaces of exact harmonic, and co-exact harmonic fields.

The operator � maps the space Hk
D(M) isomorphically onto Hn−k

N (M). Introduce the trace
spaces

i∗Hk(M) = {
i∗λ | λ ∈Hk(M)

}
, i∗Hk

N (M) = {
i∗λN | λN ∈ Hk

N (M)
}
.

A Neumann harmonic field λN is uniquely determined by its trace i∗λN . Therefore the dimension
of the space i∗Hk

N (M) is equal to βk(M). Let us prove the equality

i∗Hk(M) = Ek(∂M) + i∗Hk
N (M). (2.1)

Indeed, any harmonic field λ ∈Hk(M) can be represented in the form

λ = dη + λN, λN ∈Hk
N (M)

by the second Friedrichs decomposition. This implies

i∗λ = i∗dη + i∗λN = d(i∗η) + i∗λN .

Conversely, for ϕ ∈ Ωk−1(∂M) and λD ∈Hk+1
D (M),∫

∂M

dϕ ∧ i∗(�λD) =
∫

∂M

d
(
ϕ ∧ i∗(�λD)

) = 0.

Thus, the form α = dϕ satisfies

dα = 0 and
∫

∂M

α ∧ i∗(�λD) = 0 ∀λD ∈Hk+1
D (M). (2.2)

By Theorem 3.2.5 of [8], (2.2) is the necessary and sufficient condition for the existence of such
λ ∈Hk(M) that α = i∗λ.

By the first of Friedrichs decompositions, a harmonic field λ ∈Hk(M) can be represented as

λ = δα + λD, λD ∈Hk
D(M). (2.3)

We will need the following remark: in the representation, the form α can be chosen such that
dα = 0 and �α = 0. Indeed, first consider representation (2.3) with some α and decompose α

by Hodge–Morrey

α = dβ + δγ + λ′, dλ′ = δλ′ = 0.
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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This implies δα = δdβ . Therefore, in (2.3), α can be replaced with the form α̃ = dβ which
satisfies dα̃ = 0. Next, if the form α in (2.3) satisfies dα = 0, then it satisfies also the Eq. �α = 0
as is seen by applying the operator d to Eq. (2.3). A similar remark is valid on the second
Friedrichs decomposition.

3. DN operator

For any 0 � k � n − 1, the DN operator

Λ :Ωk(∂M) → Ωn−k−1(∂M) (3.1)

is defined as follows. Given ϕ ∈ Ωk(∂M), the boundary value problem{
�ω = 0,

i∗ω = ϕ, i∗(δω) = 0
(3.2)

is solvable, see Lemma 3.4.7 of [8]. The solution ω ∈ Ωk(M) is unique up to an arbitrary Dirich-
let harmonic field λD ∈Hk

D(M). Therefore the form

Λϕ = j∗(�dω) = (−1)k+1j∗(δ � ω) (3.3)

is independent of the choice of the solution ω and Λ is a well defined operator.
In the scalar case of k = 0, our definition is equivalent to the classical one. Indeed, in this case

the boundary value problem (3.2) coincides with (1.1) and definition (3.3) gives

Λϕ = ∂ω

∂ν
μ∂ (ϕ ∈ Ω0(∂M)),

where μ∂ ∈ Ωn−1(∂M) is the boundary volume form. Thus, in the case of k = 0, our operator Λ

differs from the classical operator Λcl by the presence of the factor μ∂ . However, some authors
prefer to consider the form-valued operator Λ :Ω0(∂M) → Ωn−1(∂M), see for example [9].

The boundary value problem (3.2) can be written in a slightly different form as the following
statement shows.

Lemma 3.1. Given ϕ ∈ Ωk(∂M), let ω ∈ Ωk(M) be a solution to the boundary value prob-
lem (3.2). Then dω ∈ Hk+1(M) and δω = 0. In particular, (3.2) is equivalent to the boundary
value problem{

�ω = 0, δω = 0,

i∗ω = ϕ.
(3.4)

Proof. Let λ = dω ∈ Ωk+1(M). We state that λ is a harmonic field. Indeed, dλ = ddω = 0.
Since d and � commute,

�λ = �dω = d�ω = 0.

The boundary conditions

i∗δλ = i∗δdω = −i∗dδω = −d(i∗δω) = 0

and

i∗(�dλ) = i∗(�ddω) = 0
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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are satisfied. Thus, λ solves the boundary value problem

�λ = 0, i∗(�dλ) = 0, i∗δλ = 0.

This implies, with the help of Proposition 3.4.5(iv) of [8], that λ is a harmonic field.
Let now ε = δω. Then ε is a harmonic field. Indeed, δε = δδω = 0 and dε = dδω = −δdω =

−δλ = 0. Since i∗ε = 0 by the second of the boundary conditions (3.2), ε is a Dirichlet harmonic
field. We have thus proved that ε = δω is a co-exact harmonic field and it is a Dirichlet harmonic
field. This implies, by the first Friedrichs decomposition, that ε = 0. �

The operator Λ is nonnegative in the following sense: the integral∫
∂M

ϕ ∧ Λϕ

is nonnegative for any ϕ ∈ Ω(∂M). This follows from the next statement. Given two forms
ϕ,ψ ∈ Ω(∂M), let ω and ε be the corresponding solutions to the boundary value problem (3.2),
i.e., {

�ω = 0,

i∗ω = ϕ, i∗(δω) = 0,

{
�ε = 0,

i∗ε = ψ, i∗(δε) = 0.
(3.5)

Then ∫
∂M

ϕ ∧ Λψ =
∫

∂M

ψ ∧ Λϕ = (dω,dε) + (δω, δε). (3.6)

Indeed, by Green’s formula

(dω,dε) = (ω, δdε) +
∫

∂M

(i∗ω) ∧ (i∗ � dε),

(δω, δε) = (ω, dδε) −
∫

∂M

(i∗δε) ∧ (i∗ � ω).

Summing these equalities and using (3.5), we obtain (3.6).
To find the dual operator Λ∗, we write the first of equalities (3.6) in the form

(ϕ, �∂Λψ) = (ψ, �∂Λϕ), (3.7)

where �∂ :Ω(∂M) → Ω(∂M) is the Hodge star on ∂M . Setting ψ = �∂ψ
′ on (3.7), we obtain

(ϕ, �∂Λ �∂ ψ ′) = (�∂ψ
′, �∂Λϕ) = (ψ ′,Λϕ).

The last equality holds because �∂ is the L2-isometry of Ω(∂M). We have thus obtained

Λ∗ = �∂ Λ �∂ . (3.8)

The kernel and range of the operator Λ are described by the following

Lemma 3.2. The kernel of Λ coincides with the range of Λ. A form ϕ ∈ Ωk(∂M) belongs to
KerΛ = RanΛ if and only if it is the trace of a harmonic field, i.e., ϕ = i∗λ for λ ∈ Hk(M).
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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Proof. We first prove the equality

KerΛ = i∗H(M),

where H(M) = ⊕n
k=0 Hk(M) is the space of all harmonic fields. If ϕ ∈ KerΛ and ω is a solution

to the boundary value problem (3.2), then ϕ = i∗ω and

(dω,dω) + (δω, δω) =
∫

∂M

ϕ ∧ Λϕ = 0

by (3.6). This means that ω ∈ Hk(M). Conversely, if ϕ = i∗ω for ω ∈H(M), then ω is a solution
to the boundary value problem (3.2) and Λϕ = i∗(�dω) = 0.

Next, we prove the equality

RanΛ = i∗H(M).

Let ψ ∈ RanΛ, ψ = Λϕ. This means the existence of a solution ω ∈ Ω(M) to the boundary
value problem{

�ω = 0, δω = 0,

i∗ω = ϕ, i∗(�dω) = ψ.

By Lemma 3.1, dω is a harmonic field. Therefore �dω is a harmonic field too. Hence ψ =
i∗(�dω) ∈ i∗H(M). Conversely, let ψ ∈ i∗H(M), i.e.,

ψ = i∗λ, λ ∈ H(M). (3.9)

By the second Friedrichs decomposition, the harmonic field �λ can be represented as

�λ = dω + λN, (3.10)

where λN is a Neumann harmonic field and ω is chosen such that (see the remark at the end of
Section 2)

δω = 0, �ω = 0.

This implies

Λ(i∗ω) = i∗(�dω).

Applying the operator i∗� to (3.10), we obtain

i∗(�dω) = ±i∗λ.

Two last equations imply

i∗λ = ±Λ(i∗ω).

Comparing this equality with (3.9), we see that ψ = Λ(±i∗ω), i.e., ψ ∈ RanΛ. �
Corollary 3.3. The operator Λ possesses the following properties:

Λd = 0, dΛ = 0, Λ2 = 0. (3.11)

Proof. The first of equalities (3.11) means that any exact form is the trace of a harmonic field.
This is true by (2.1). The second of equalities (3.11) is equivalent to the obvious fact: the trace of
a harmonic field is a closed form. The last of equalities (3.11) follows from the relation KerΛ =
RanΛ. �

Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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Corollary 3.4. The operator dΛ−1 is well defined on boundary traces of harmonic fields, i.e., the
equation Λϕ = ψ has a solution ϕ for any ψ ∈ i∗H(M), and dϕ is uniquely determined by ψ .
In particular, the operator dΛ−1d :Ω(∂M) → Ω(∂M) is well defined.

Proof. The boundary trace ψ ∈ i∗H(M) of a harmonic field belongs to RanΛ by Lemma 3.2,
so the equation Λϕ = ψ is solvable. If Λϕ1 = Λϕ2, then the form ϕ1 −ϕ2 is closed since it is the
trace of a harmonic field. Therefore dϕ1 = dϕ2. An exact form is the trace of a harmonic field
by (2.1). �
Remark 1. There is some freedom in the definition of the DN operator. One can define the DN
map as

Λ̃ = (−1)kn �∂ Λ :Ωk(∂M) → Ωk(∂M).

This operator preserves the degree of a form. Moreover, it is a nonnegative self-dual operator,
i.e., (Λ̃ϕ,ϕ) � 0 and Λ̃∗ = Λ̃ as is seen from (3.6) and (3.8). Thus, the operator Λ̃ has more
conventional properties than Λ. Just Λ̃ is used in [2]. Nevertheless, we have chosen Λ in our
definition of the DN map since we share the opinion by J. Sylvester [9]: the DN operator should
transform a k-form to an (n−k−1)-form. The operators Λ and Λ̃ are equivalent in the following
sense: given the Riemannian manifold ∂M , we can express Λ̃ through Λ and vise versa.

Remark 2. Quite different definition of the DN map is chosen in [4]. By this definition, the DN
operator maps a form ϕ ∈ Ωk(M)|∂M to ∂ω/∂ν, where ω is the solution to the boundary value
problem (1.1). The main result of [4] is that the full symbol of the latter DN map Ωk(M)|∂M →
Ωk(M)|∂M determines the boundary C∞-jet of the metric for any k.

4. Betti numbers

If we know the kernel of Λ, we can write down some low bounds for Betti numbers as is seen
from the following

Theorem 4.1. Let Λk be the restriction of the operator Λ to Ωk(∂M). The kernel KerΛk con-
tains the space Ek(∂M) of exact forms and

dim
[
KerΛk/Ek(∂M)

]
� min

{
βk(M),βk(∂M)

}
.

Proof. Consider the Hodge decomposition for ∂M

Ωk(∂M) = Ck(∂M) ⊕ Ek(∂M) ⊕Hk(∂M).

The space of closed forms coincides with the sum of two last summands of the decomposition.
The kernel KerΛk consists of closed forms by Lemma 3.2 and contains all exact forms by

(3.11), i.e.,

Ek(∂M) ⊂ KerΛk ⊂ Ek(∂M) ⊕Hk(∂M).

This implies

dim
[
KerΛk/Ek(∂M)

]
� dimHk(∂M) = βk(∂M).

By Lemma 3.2 and (2.1),

KerΛk = Ek(∂M) + j∗Hk
N (M).
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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Therefore

dim
[
KerΛk/Ek(∂M)

]
� dimHk

N (M) = βk(M). �
The main result of the article is the following

Theorem 4.2. For any 0 � k � n − 1, the range of the operator

Λ + (−1)kn+k+ndΛ−1d :Ωk(∂M) → Ωn−k−1(∂M)

is i∗Hn−k−1
N (M) and

dim Ran
[
Λ + (−1)kn+k+ndΛ−1d

] = βn−k−1(M).

Proof. We have to prove the equality(
Λ + (−1)kn+k+ndΛ−1d

)
Ωk(∂M) = i∗Hn−k−1

N (M). (4.1)

Given ϕ ∈ Ωk(∂M), let ω ∈ Ωk(M) be a solution to the boundary value problem (3.2). By
Lemma 3.1, dω ∈ Hk+1(M). We apply the first Friedrichs decomposition to dω

dω = δα + λD, where λD ∈Hk+1
D (M). (4.2)

As is mentioned at the end of Section 2, the form α ∈ Ωk+2(M) can be chosen such that

dα = 0, �α = 0. (4.3)

We set β = �α ∈ Ωn−k−2(M). (4.3) implies

δβ = 0, �β = 0. (4.4)

Substituting the value α = (−1)k(n−k) � β into (4.2), we have

dω = (−1)k(n−k)δ � β + λD. (4.5)

Apply the operator i∗ to Eq. (4.5)

i∗(dω) = (−1)k(n−k)i∗(δ � β). (4.6)

Using the relations

i∗(dω) = d(i∗ω) = dϕ

and

δ � β = (−1)n−k−1 � dβ,

we rewrite (4.6) in the form

dϕ = (−1)kn+n+1i∗(�dβ). (4.7)

Formulas (4.4) and (4.7) mean that

dϕ = (−1)kn+n+1Λi∗β. (4.8)

Next, we apply the operator � to Eq. (4.5)

�dω = (−1)k(n−k) � δ � β + �λD
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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and take the restriction to the boundary

i∗(�dω) = (−1)k(n−k)i∗(�δ � β) + i∗(�λD). (4.9)

The left-hand side of this formula is equal to Λϕ. Using the relation

�δ � β = (−1)kndβ,

we transform the first term on the right-hand side of (4.9) as follows:

i∗(�δ � β) = (−1)kni∗dβ = (−1)knd(i∗β).

Thus, (4.9) is equivalent to the equation

Λϕ = (−1)kd(i∗β) + i∗(�λD). (4.10)

The form i∗β can be eliminated from the system of Eqs. (4.8) and (4.10). Indeed, (4.8) implies
with the help of Corollary 3.3

d(i∗β) = (−1)kn+n+1(dΛ−1d)ϕ.

Inserting this expression into (4.10), we obtain(
Λ + (−1)kn+k+ndΛ−1d

)
ϕ = i∗(�λD).

We have thus proved that the left-hand side of (4.1) is a subset of the right-hand side.
To prove the converse inclusion, we first recall that

Hk
D(M) ∩Hk

N (M) = 0.

Together with Friedrichs decompositions, this implies that

Hk(M) = Hk
ex(M) +Hk

co(M),

i.e., a harmonic field can be represented as a sum of exact and co-exact harmonic fields.
Given λN ∈Hn−k−1

N (M), the representation

λN = dα + δβ (4.11)

exists by the remark of the previous paragraph. The forms α and β can be chosen such that

δα = 0, �α = 0 (4.12)

and

dβ = 0, �β = 0. (4.13)

The latter statement is proved by the same argument as one used at the end of Section 2.
We set

ω = (−1)kn+1 � β, ε = (−1)kn+k+nα.

Relations (4.12)–(4.13) imply

δω = 0, �ω = 0, (4.14)

δε = 0, �ε = 0, (4.15)

and Eq. (4.11) is rewritten in the form

λN = �dω + (−1)kn+k+ndε. (4.16)
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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Applying the operator � to the latter equation, we obtain

�λN = (−1)kn+k+n(�dε − dω). (4.17)

We define forms ϕ,ψ ∈ Ω(∂M) by

ϕ = i∗ω, ψ = i∗ε. (4.18)

Restricting Eq. (4.16) to the boundary, we obtain

i∗λN = i∗(�dω) + (−1)kn+k+nd(i∗ε). (4.19)

Eqs. (4.14) and the first of equalities (4.18) mean that i∗(�dω) = Λϕ. Therefore (4.19) can be
rewritten as

i∗λN = Λϕ + (−1)kn+k+nd(i∗ε). (4.20)

On the other hand, restricting Eq. (4.17) to the boundary, we obtain

i∗(�dε) = d(i∗ω). (4.21)

Eqs. (4.15) and the second of equalities (4.18) mean that i∗(�dε) = Λψ . Therefore (4.21) can be
rewritten as

Λψ = dϕ. (4.22)

Finally, we eliminate the form ψ from the system of Eqs. (4.20) and (4.22) with the help of
Corollary 3.3 and obtain

i∗λN = (
Λ + (−1)kn+k+ndΛ−1d

)
ϕ. �

5. Hilbert transform

One of equivalent definitions of the classical Hilbert transform T on the unit circle S = {eiθ }
is as follows. Let f = ε + iω be a holomorphic function in the disc {reiθ | 0 � r � 1} so that ω

and ε are conjugate by Cauchy–Riemann: dω = �dε. If ϕ = ω|S and ψ = ε|S are the boundary
traces, then T

dϕ
dθ

= dψ
dθ

.
Returning to the general case, we define the Hilbert transform as follows:

T = dΛ−1 : i∗Hk(M) → i∗Hn−k(M).

This is a well defined operator by Corollary 3.4. In particular, T is defined on exact boundary
forms and maps such forms again to exact forms, i.e.,

T :Ek(∂M) → En−k(∂M).

In the present section, we use T as the operator on the space of exact boundary forms.
Let ω ∈ Ωk(M) and ε ∈ Ωn−k−2(M) (0 � k � n − 2) be two co-closed forms,

δω = 0, δε = 0.

The form ε is named the conjugate form of ω if

dω = �dε. (5.1)

This implies immediately that

�ω = 0, �ε = 0,
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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and (−1)kn+k+n+1ω is the conjugate form of ε.
Not any ω satisfying �ω = 0 and δω = 0 has a conjugate form. The remarkable fact is that

the existence of the conjugate form can be checked in terms of the trace ϕ = i∗ω and of the
operator Λ.

Theorem 5.1. A form ω ∈ Ωk(M) satisfying �ω = 0 and δω = 0 has a conjugate form if and
only if the trace ϕ = i∗ω satisfies(

Λ + (−1)kn+k+ndΛ−1d
)
ϕ = 0. (5.2)

In this case, if ε is the conjugate form of ω and ψ = i∗ε, then

T dϕ = dψ. (5.3)

Proof. Necessity. Let a co-closed form ω ∈ Ωk(M) have a conjugate co-closed form ε ∈
Ωn−k−2(M). Set ϕ = i∗ω and ψ = i∗ε. The forms ω and ε solve boundary value problems (3.5).
Therefore

Λϕ = i∗(�dω), Λψ = i∗(�dε). (5.4)

The second of equalities (5.4) and (5.1) imply

Λψ = i∗dω = d(i∗ω) = dϕ.

Applying the operator � to (5.1), we get

�dω = (−1)kn+k+n+1dε.

Together with the latter relation, the first of equalities (5.4) gives

Λϕ = (−1)kn+k+n+1i∗dε = (−1)kn+k+n+1d(i∗ε) = (−1)kn+k+n+1dψ.

We have thus proved that{
Λϕ = (−1)kn+k+n+1dψ,

Λψ = dϕ.
(5.5)

Eliminating ψ from the latter system, we obtain (5.2). The second of equations (5.5) is equivalent
to (5.3).

Sufficiency. Let a form ϕ ∈ Ωk(∂M) satisfy (5.2) and ω be a solution to the boundary value
problem (3.2). Applying the operator T = dΛ−1 to Eq. (5.2), we obtain(

I + (−1)kn+k+nT 2)dϕ = 0, (5.6)

where I is the identity operator.
By Corollary 3.4, the equation

Λψ = dϕ (5.7)

is solvable. Fix a solution ψ to the equation and consider the boundary value problem{
dε = χ := (−1)kn+k+n+1 � dω, δε = 0,

i∗ε = ψ.
(5.8)

By Theorem 3.2.5 of [8], the necessary and sufficient conditions for solvability of the problem
are

dχ = 0, i∗χ = dψ,
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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and

(χ,λD) =
∫

∂M

ψ ∧ i∗(�λD) ∀λD ∈ Hn−k−1
D (M). (5.9)

The first condition is satisfied since

dχ = ±d � dω = ± � δdω = ± � �ω = 0.

The second condition holds since, by (5.2),

i∗χ = (−1)kn+k+n+1i∗(�dω) = (−1)kn+k+n+1Λϕ = dΛ−1dϕ = dψ.

It remains to check (5.9).
The left-hand side of (5.9) is equal to zero for any Dirichlet harmonic field λD . Indeed, sub-

stituting the value of χ from (5.8), we can write

(χ,λD) = ±(�dω,λD) = ±(dω, �λD).

The right-hand side of the latter formula is zero by the second Friedrichs decomposition since dω

is an exact harmonic field and �λD is a Neumann harmonic field. Condition (5.9) is thus reduced
to the following one:∫

∂M

ψ ∧ i∗λN = 0 ∀λN ∈Hk+1
N (M). (5.10)

By Theorem 4.2, i∗Hk+1
N (M) coincides with the range of the operator

G = Λ + (−1)kn+k+ndΛ−1d :Ωn−k−2(∂M) → Ωk+1(∂M). (5.11)

Therefore condition (5.10) can be rewritten as follows:

(ψ, �∂Gη) = ±
∫

∂M

ψ ∧ Gη = 0 ∀η ∈ Ωn−k−2(∂M).

In other words, ψ must belong to the kernel of the operator (�∂G)∗,

(�∂G)∗ψ = 0. (5.12)

One easily obtains from (3.8)

G∗ = �∂G�∂

and

(�∂G)∗ = ± �∂ G.

Therefore (5.12) is equivalent to the equation

Gψ = 0. (5.13)

Finally, substituting the values ψ = Λ−1dϕ and

G = Λ + (−1)kn+k+ndΛ−1d

into (5.13), we see that the latter equation is equivalent to (5.6).
We have thus proved the solvability of the boundary value problem (5.8). The solution ε to

the problem is the conjugate form of ω. �
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Corollary 5.2. For 1 � k � n − 1, introduce the space

Bk(∂M) = {
dϕ | ϕ ∈ Ωk−1(∂M),Gϕ = 0

} ⊂ Ek(∂M),

where the operator G :Ω(∂M) → Ω(∂M) is defined by (5.11). The Hilbert transform T maps
Bk(∂M) isomorphically onto Bn−k(∂M). If

T̃k :Bk(∂M) → Bn−k(∂M) (5.14)

is the restriction of T to Bk(∂M), then T̃ −1
k = (−1)kn+kT̃n−k .

Proof. For a form ϕ ∈ Ωk−1(∂M) satisfying Gϕ = 0, let ω ∈ Ωk−1(M) be a solution to the
boundary value problem (3.2). Then ω has a conjugate form ε ∈ Ωn−k−1(M) by Theorem 5.1.
The trace ψ = i∗ε satisfies (5.3). The form ε has the conjugate (−1)kn+kω, and Gψ = 0 by
Theorem 5.1. Now, (5.3) shows that T dϕ = dψ ∈ Bn−k(∂M). We have thus proved that T

maps Bk(∂M) to Bn−k(∂M) and operator (5.14) is well defined. By (5.6), T̃n−kT̃k = (−1)kn+kI .
Therefore T̃k is an isomorphism. �
Corollary 5.3. Let 1 � k � n − 1. If βk(M) = βn−k(M) = 0, then the Hilbert transform T maps
Ek(∂M) isomorphically onto En−k(∂M). If

Tk :Ek(∂M) → En−k(∂M)

is the restriction of T to Ek(∂M), then T −1
k = (−1)kn+kTn−k .

Proof. If βk(M) = βn−k(M) = 0, then the operator G vanishes on Ωk−1(∂M) and on
Ωn−k−1(∂M) by Theorem 4.2. Therefore Bk(∂M) = Ek(∂M) and Bn−k(∂M) = En−k(∂M).
It remains to apply Corollary 5.2. �
6. DN map on highest degree forms

We prove here that the volume of the manifold can be easily determined from the DN map
known on forms of highest degree.

Theorem 6.1. For ϕ ∈ Ωn−1(∂M), where n = dimM , the function Λϕ ∈ Ω0(∂M) is constant
and

Λϕ = 1

Vol(M)

∫
∂M

ϕ.

This is a generalization of the classical formula

2 Vol(M) =
∫

∂M

(x dy − y dx)

for a plane domain M .

Proof. Let ω be a solution to the boundary value problem (3.2). By Lemma 3.1, dω is a harmonic
field. The space Hn(M) of harmonic fields of highest degree consists of forms Cμ, where C =
const and μ is the volume form. Thus,

dω = Cμ, C = const.
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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From this, �dω = C and

Λϕ = i∗(�dω) = C. (6.1)

Write down the Stockes formula for ω∫
M

dω =
∫

∂M

i∗ω.

Since dω = Cμ and i∗ω = ϕ, this gives

C Vol(M) =
∫

∂M

ϕ.

Together with (6.1), the last formula gives the statement of the theorem. �
Let μ∂ be the volume form of ∂M . Choosing a function λ ∈ C∞(∂M) and setting ϕ = λμ∂ in

Theorem 6.1, we obtain

Vol(M) = 1

Λ(λμ∂)

∫
∂M

λμ∂.

Perhaps, this formula is of some interest for applications, e.g., in electro impedance tomography.
The question is whether the value of the constant function Λ(λμ∂) can be extracted from bound-
ary measurements. If so, the volume Vol(M) can be determined from boundary measurements
implemented on an arbitrarily small part of the boundary. Indeed, the function λ can be chosen
to be supported in an arbitrary open subset of ∂M and it is enough to measure the value of the
constant function Λ(λμ∂) at one point.

7. Recovering the additive real cohomology structure from the DN map

The exact cohomology sequence of the pair (M,∂M) looks as follows

· · · ∂∗−→ Hk(M,∂M)
j∗

−→ Hk(M)
i∗−→ Hk(∂M)

∂∗−→ Hk+1(M,∂M)
j∗

−→ · · · . (7.1)

We consider cohomologies with real coefficients. Recall that the finite dimensional vector spaces
Hk(M) are defined as cohomologies of the De Rham complex

· · · d−→ Ωk−1(M)
d−→ Ωk(M)

d−→ Ωk+1(M)
d−→ · · · .

Similarly, Hk(∂M) are cohomologies of the De Rham complex of the boundary. The operator i∗
on (7.1) is defined by the equality i∗[ω]M = [i∗ω]∂M , where [ω]M is the cohomology class of a
closed form ω in Hk(M) and [i∗ω]∂M is the cohomology class of the form i∗ω in Hk(∂M). The
definition is correct since d and i∗ commute.

Let us recall the definition of relative cohomologies. Let Ωk(M,∂M) be the space of forms
ω ∈ Ωk(M) satisfying i∗ω = 0. If i∗ω = 0 then also i∗(dω) = 0. Therefore we have the well-
defined cochain complex

· · · d−→ Ωk−1(M,∂M)
d−→ Ωk(M,∂M)

d−→ Ωk+1(M,∂M)
d−→ · · · .

The spaces Hk(M,∂M) are cohomologies of the latter complex. The operator j∗ on (7.1) is
induced by the embedding of pairs j : (M,∅) ⊂ (M,∂M). In other words, j∗[ω](M,∂M) = [ω]M
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for a closed form ω ∈ Ωk(M) satisfying i∗ω = 0. The definition is correct since [ω]M = 0 if
[ω](M,∂M) = 0. Finally, the coboundary operator ∂∗ on (7.1) is defined as follows. Given a closed
boundary form ω ∈ Ωk(∂M), let α ∈ Ωk(M) be an extension of ω to M , i.e., i∗α = ω. The form
dα is closed and has the zero boundary trace. We set ∂∗[ω]∂M = [dα](M,∂M). One can check the
correctness of the definition.

Sequence (7.1) is exact, i.e., the kernel of each operator of the sequence coincides with the
range of the preceding operator. This is the standard fact of cohomology theory [3].

Now, we pose the inverse problem: Given the data (∂M,Λ), one has to recover sequence (7.1)
up to an isomorphism, i.e., to construct a sequence

· · · ∂̃∗−→ H̃ k(M,∂M)
j̃∗

−→ H̃ k(M)
ĩ∗−→ Hk(∂M)

∂̃∗−→ H̃ k+1(M,∂M)
j̃∗

−→ · · · (7.2)

of vector spaces and operators which is isomorphic to sequence (7.1). The latter means the exis-
tence of a commutative diagram

· · · ∂̃∗→ H̃ k(M,∂M)
j̃∗
→ H̃ k(M)

ĩ∗→ Hk(∂M)
∂̃∗→ H̃ k+1(M,∂M)

ĩ∗→ · · ·
μ ↓ λ ↓ ι ↓ μ ↓

...
∂∗→ Hk(M,∂M)

j∗
→ Hk(M)

i∗→ Hk(∂M)
∂∗→ Hk+1(M,∂M)

j∗
→ · · ·

(7.3)

where λ,μ are isomorphisms and ι is the identity operator.
We present the solution of the inverse problem based on the results of previous sections.
By Theorem 4.2, we can determine the spaces i∗Hk

N (M) from our data (∂M,Λ). We define

H̃ k(M) = i∗Hk
N (M), H̃ k(M,∂M) = i∗Hn−k

N (M).

The homomorphism H̃ k(M)
ĩ∗−→ Hk(∂M) is defined as follows. If ϕ = i∗ω ∈ H̃ k(M) for ω ∈

Hk
N (M), then the form ϕ ∈ Ωk(∂M) is closed, and we set ĩ∗ϕ = [ϕ]∂M.

In Section 5, we defined the Hilbert transform as an operator on the space of boundary traces
of harmonic fields:

T = dΛ−1 : i∗Hk(M) → i∗Hn−k(M).

Moreover, the following holds:

Lemma 7.1. The Hilbert transform maps traces of Neumann harmonic fields again to traces of
Neumann harmonic fields, i.e.,

T = dΛ−1 : i∗Hk
N (M) → i∗Hn−k

N (M).

Proof. Let ψ ∈ i∗Hk
N (M). By Theorem 4.2, ψ can be represented as

ψ = (
Λ + (−1)kn+k+1dΛ−1d

)
ϕ

with some ϕ ∈ Ωn−k−1(∂M). From this

T ψ = dΛ−1ψ = dΛ−1(Λ + (−1)kn+k+1dΛ−1d
)
ϕ

= (
d + (−1)kn+k+1dΛ−1dΛ−1d

)
ϕ = (

Λ + (−1)kn+k+1dΛ−1d
)
Λ−1dϕ.

The right-hand side of the latter formula belongs to i∗Hn−k(M) by the same Theorem 4.2. �
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We continue constructing sequence (7.2). On using Lemma 7.1, we define the homomorphism
j̃∗ : H̃ k(M,∂M) −→ H̃ k(M) as

j̃∗ = (−1)kn+k+1T : H̃ k(M,∂M) = i∗Hn−k
N (M) → i∗Hk

N (M) = H̃ k(M).

Finally, the homomorphism ∂̃∗ :Hk(∂M) → H̃ k+1(M,∂M) is defined as

∂̃∗ = (−1)kn+k+n+1Λ :Hk(∂M) −→ i∗Hn−k−1
N (M) = H̃ k+1(M,∂M).

More precisely, we observe that, given a closed form ϕ ∈ Ωk(∂M), the form Λϕ be-
longs to the space i∗Hn−k−1

N (M) in view of Theorem 4.2 and of the equality Λϕ = (Λ +
(−1)kn+k+ndΛ−1d)ϕ. We set

∂̃∗[ϕ]∂M = (−1)kn+k+n+1Λϕ.

The definition is correct since Λd = 0.
We have thus constructed sequence (7.2). Next, we will define the vertical isomorphisms λ

and μ participating on diagram (7.3).

The operator H̃ k(M)
λ−→ Hk(M) is defined as follows. If ϕ = i∗ω for ω ∈ Hk

N (M), then
λϕ = [ω]M . It is the isomorphism because there exists a unique Neumann harmonic field in any
cohomology class.

The homomorphism H̃ k(M,∂M)
μ−→ Hk(M,∂M) is defined as follows. If ϕ = i∗ω for ω ∈

Hn−k
N (M), then the form �ω ∈ Hk

D(M) is closed and i∗(�ω) = 0. We set μϕ = [�ω](M,∂M). It is
the isomorphism because every relative cohomology class contains a unique Dirichlet harmonic
field.

We have thus defined all terms of diagram (7.3). Now, we have to check that the diagram is
commutative.

The commutativity of the square

H̃ k(M)
ĩ∗−→ Hk(∂M)

λ ↓ ι ↓
Hk(M)

i∗−→ Hk(∂M)

is almost obvious. Indeed, a form ϕ ∈ H̃ k(M) = i∗Hk
N (M) can be uniquely represented as ϕ =

i∗ω with ω ∈Hk
N (M). Then

i∗λϕ = [i∗ω]∂M = [ϕ]∂M = ĩ∗ϕ.

Next, we check the commutativity of the square

H̃ k(M,∂M)
j̃∗

−→ H̃ k(M)

μ ↓ λ ↓
Hk(M,∂M)

j∗
−→ Hk(M)

Let ϕ ∈ H̃ k(M,∂M) = i∗Hn−k
N (M). Represent it as

ϕ = i∗ω, ω ∈ Hn−k
N (M).

By the definition of μ,

μϕ = [�ω](M,∂M).
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
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Therefore

j∗μϕ = [�ω]M. (7.4)

The form ψ = j̃∗ϕ ∈ H̃ k(M) = i∗Hk
N (M) can be also represented as

j̃∗ϕ = ψ = i∗ν, ν ∈Hk
N (M).

By the definition of λ,

λj̃∗ϕ = λψ = [ν]M. (7.5)

Comparing (7.4) and (7.5), we see that the commutativity of the square is equivalent to the
equality

[�ω]M = [ν]M
which means that the Friedrichs decomposition of the form �ω must look as follows:

�ω = ν + dα, α ∈ Ωk−1(M). (7.6)

By the remark at the end of Section 2, we can assume the form α to satisfy the equations

�α = 0, δα = 0.

Restricting equation (7.6) to the boundary, we have

ψ = i∗ν = −i∗dα = −di∗α. (7.7)

On the other hand, applying � to (7.6), we obtain

(−1)k(n−k)ω = �ν + �dα.

Take the restriction of the last equation to the boundary

(−1)k(n−k)ϕ = (−1)k(n−k)i∗ω = i∗(�dα) = Λj∗α.

From this

i∗α = (−1)k(n−k)Λ−1ϕ.

Substituting the latter value into (7.7), we obtain

ψ = (−1)kn+k+1dΛ−1ϕ = (−1)kn+k+1T ϕ

or

j̃∗ϕ = (−1)kn+k+1T ϕ.

This is just our definition of j̃∗.
Finally, we check the commutativity of the square

Hk(∂M)
∂̃∗−→ H̃ k+1(M,∂M)

ι ↓ μ ↓
Hk(∂M)

∂∗−→ Hk+1(M,∂M)

Given a closed form ϕ ∈ Ωk(∂M), let ω ∈ Ωk(M) be a solution to the boundary value problem
(3.2). Then

∂∗[ϕ]∂M = [dω](M,∂M) (7.8)
Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull.
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and

Λϕ = i∗(�dω).

By the definition of μ,

μΛϕ = [� � dω](M,∂M) = (−1)kn+k+n+1[dω](M,∂M). (7.9)

Comparing (7.8) and (7.9), we obtain

μΛϕ = (−1)kn+k+n+1∂∗[ϕ]∂M.

According to our definition of ∂̃∗, the last equation means that

μ∂̃∗[ϕ]∂M = ∂∗[ϕ]∂M.

We have thus proved the commutativity of diagram (7.3). Let us mention the following sup-
plement to Lemma 7.1:

Corollary 7.2. If βk−1(∂M) = βk(∂M) = 0, then the Hilbert transform

T : i∗Hn−k
N (M) −→ i∗Hk

N (M)

is the isomorphism.

In conclusion, we emphasize the key role of the operators Λ and T in the construction of
sequence (7.2). Probably, such a role inscribes the DN map and Hilbert transform into the list
of objects of algebraic topology. We also set up an important open question. Recall that the
cohomology spaces H ∗(M) = ⊕n

k=0 Hk(M) and H ∗(M,∂M) = ⊕n
k=0 Hk(M,∂M) have the

structure of graded rings with the multiplication induced by the wedge product of forms. Can
the multiplicative structure of cohomologies be recovered from our data (∂M,Λ)? Till now, the
authors cannot answer the question.
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