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ABSTRACT
We derive the formulas expressing the topological characteristics (Betti num-

bers) of 3d–manifold with boundary through its Dirichlet-to-Neumann maps as-
sociated with scalar and vector harmonic fields.

RESUMEN
Derivamos las fórmulas expresando las caracteŕısticas topológicas (números

Betti) de 3era- variedad a través de sus funciones Dirichlet-Neumann asociadas
con campos harmónicos escalar y vectorial.
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Introduction

About the paper. As was shown by Lassas and Uhlmann [3], a smooth two-
dimensional compact orientable Riemannian manifold is determined by its Dirichlet-

1Supported by the RFBR grants 02–01–00260 and NS–2261.2003.1.
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to-Neumann (DN) map up to conformal equivalence. In [1] this result was obtained
by another technique (the BC-method); in the same paper a simple formula linking
the Euler characteristic of the manifold to its DN map has been derived.

Here the 3d–analogs of this formula are presented; namely, we express the dimen-
sions of the Dirichlet and Neumann subspaces of harmonic vector fields (the Betti
numbers) in terms of the scalar and vector DN maps (see (3.11),(3.15)). In contrast
to the 2d–case these dimensions do not determine the topology of the manifold but,
nevertheless, give a substantive information on it. The background of our 3d–formulas
is the Friedrichs decomposition of the space of harmonic vector fields [6].

If a manifold of any dimension ≥ 3 is real analytic it is determined by its scalar
DN map up to isometry [4]; so, roughly speaking, this map determines everything
including the Betti numbers. However, for finding them by [4] one needs at first
to recover the manifold , i.e., to solve the inverse problem whereas our formulas
express the Betti numbers through the inverse data directly. One more point is that
analyticity is not welcomed in this kind of problems, and the most interesting and
challenging question of reconstruction in the general (nonanalytic) case remains open.
Our formulas do not require the analiticity.

1 Vector analysis

1.1 Operations in Ω.

In section 1 we recall some of the definitions of vector analysis (see [6], chapter 3).
Let Ω be a smooth 2 compact orientable Riemannian 3d–manifold with connected

boundary Γ , g the metric tensor, µ the volume 3-form.
For a (vector) field a given in Ω one defines a conjugate 1-form a] by a](b) = g(a, b);

for an 1-form ω a conjugate field ω] is defined by g(ω], b) = ω(b).
The scalar product ” · ”: {fields} × {fields} → {functions} is defined pointwise

by a · b = g(a, b). The vector product × : {fields} × {fields} → {fields} is defined
pointwise by g(a× b, c) = µ (a, b, c).

The gradient ∇ : {functions} → {fields} and the divergence div : {fields} →
{functions} are defined in a standard way (see e.g. [6]).

The curl is defined as a map curl : {fields} → {fields} , curla = (? d a])] where d
is the exterior derivative and ? is the Hodge operator.

Recall the basic identities div curl = 0 and curl∇ = 0.
The scalar Laplacian ∆ : {functions} → {functions} is ∆ := div∇. The vector

Laplacian ~∆ : {fields} → {fields} is ~∆ := ∇ div − curl curl.
Let ν be the outward unit normal on Γ, µΓ the (induced) surface form on Γ; recall

the Green formulas
∫

Ω

div a uµ =
∫

Γ

a · ν uµΓ −
∫

Ω

a · ∇uµ (1.1)

2everywhere in the paper ’smooth’ means ’C∞–smooth up to the boundary’.
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and ∫

Ω

curl a · b µ =
∫

Γ

ν × a · b µΓ +
∫

Ω

a · curl b µ . (1.2)

The surface integral in (1.2) may be written in the form
∫
Γ

µ (ν, a, b)µΓ.

1.2 Operations on Γ.

Each field a may be represented at the boundary as

a = aθ + a · ν ν

where aθ := a− a · ν ν is a tangential component, aθ ⊥ ν.
Considering Γ as a Riemannian manifold equipped with the metric g |Γ and the

volume element µΓ by ∇Γ and divΓ we shall mean the corresponding gradient and
divergence. Note the equality 3

(∇u)θ = ∇Γ (u |Γ) on Γ ;

recall the well-known relation

curl a · ν = − divΓ ν × a on Γ (1.3)

and the identity
divΓ ν ×∇Γ = 0 . (1.4)

In what follows for a class A of functions on Γ we denote Ȧ := { f ∈ A | ∫
Γ

fµΓ =

0 } ; Hs(. . . ) and ~Hs(. . . ) are the Sobolev classes of functions and fields. The class
of potential fields PΓ := {∇Γf | f ∈ H1(Γ) } is considered as a subspace of ~L2(Γ).

Introduce the ’integration operators’ J : PΓ → L̇2(Γ) defined by

J ∇Γ f = f , f ∈ Ḣ1(Γ) (1.5)

and ~J : L̇2(Γ) → PΓ defined by

~J divΓ j = − j , j ∈ PΓ ∩ ~H1(Γ) . (1.6)

As is easy to see, both of the operators are injective and compact; the relations

RanJ = Ḣ1(Γ) ; Ran ~J = PΓ ∩ ~H1(Γ) ; J∗ = ~J ;

J−1 = ∇Γ ; ~J−1 = − divΓ (1.7)

hold.
3here and below, for a vector field a(·) and a point γ ∈ Γ we identify the tangential component

[a(γ)]θ to the corresponding element of TγΓ.
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2 Helmholtz type decompositions

2.1 Decomposition of ~L2(Ω).

Here we also recall the well–known facts (see [6]).
The space of the vector fields ~L2(Ω) with the inner product

( a , b )~L2(Ω) =
∫

Ω

a · b µ

may be represented in the form of an orthogonal sum:

~L2(Ω) = P0 ⊕ S (2.1)

of the subspace of potential fields

P0 := {∇p | p ∈ H1(Ω) , p|Γ = 0 }

and the subspace of solenoidal fields

S := { s ∈ ~L2(Ω) |div s = 0 }

that is the classical Helmholtz decomposition.
The Hodge–Morrey decomposition detalizes the second summand in (2.1) :

S = H⊕ C0

where
H := { a ∈ ~L2(Ω) | div a = 0 , curl a = 0 }

is the subspace of harmonic fields whereas

C0 := { curl b | b ∈ ~H1(Ω) , bθ = 0 }

is the subspace of curls. So, (2.1) takes the form

~L2(Ω) = P0 ⊕ H ⊕ C0 . (2.2)

In what follows, for a class of fields A we denote by A∞ the (sub)class of the
smooth elements of A. As is well-known, the classes P0∞ , S∞ , H∞ , C0∞ are
dense in the corresponding subspaces.

2.2 Harmonic fields.

The second summand in (2.2) is of particular interest and here we list some of the
properties of its elements (see e.g. [6]).

(i) Harmonic fields are smooth into Ω : H ⊂ ~C∞loc(Ω); recall that H∞ is dense in
H.
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(ii) A harmonic field possesses a trace at the boundary: the map tr : a 7→ a|Γ
acts continuously from H to ~H− 1

2 (Γ). By the well-known uniqueness theorem this
map is injective , i.e., a harmonic field is determined by its trace.

(iii) The subspace H may be represented in the form of the summ

H = C ⊕ D (2.3)

of the subspace of curls
C := { a ∈ H | a = curl h}

and the subspace of the Dirichlet fields

D := { d ∈ H | ν × d = 0} ,

or as the sum
H = G ⊕ N (2.4)

of the subspace of gradients

G := { a ∈ H | a = ∇u}
and the subspace of the Neumann fields

N := {n ∈ H |n · ν = 0} .

Representations (2.3),(2.4) are known as the Friedrichs decompositions. The smooth
classes C∞ and G∞ are dense in C and G.

The elements of the Dirichlet and Neumann subspaces are smooth; their dimen-
sions (the Betti numbers of the manifold Ω) β1 = dimN , β2 = dimD are finite
and determined by topology of Ω (see [6]). Recall that the boundary Γ is assumed
connected; in this case the following holds.

Lemma 1 The inequality dimN ≥ dimD is valid.

Proof To prove this inequality is to show that d ∈ D and d ⊥ N implies d = 0.
Since d ⊥ N , by virtue of (2.4) one has d = ∇u; hence ∆u = div d = 0 in Ω. At

the same time, ν ×∇u = ν × d = 0 so that u is a harmonic function in Ω whereas
∇u is parallel to ν on Γ. As Γ is connected the last yields u|Γ = const. Therefore
u = const in Ω and d = ∇u = 0.

The next lemma specifies a ’positional relationship’ of the subspaces ocuuring in
the Friedrichs decompositions. We denote by PA the orthogonal projection in ~L2(Ω)
on a subspace A.

Lemma 2 The relations

1) D ∩N = { 0 } ; 2) clos PGC = G ; 3) PNC = N ;

4) PDG = D ; 5) dimPND = dimD (2.5)

are valid.
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Proof
1) If a ∈ D∩N , then a×ν = 0 and a ·ν = 0 on Γ , i.e., tr a = 0. By injectivity

of tr we obtain a = 0 .
2) If a ∈ GªPGC, then a = ∇u and ∇u ⊥ C. By (2.3) the latter leads to ∇u ∈ D

yielding ν ×∇u = 0 in Ω and, since Γ is connected, u|Γ = const. Hence u = const
and a = ∇u = 0.

3) If n ∈ N ª PNC, then n ⊥ C and, by virtue of (2.3), one has n ∈ D. So,
n ∈ N ∩ D and we obtain n = 0.

4) If d ∈ D ª PDG, then d ⊥ G and, by virtue of (2.4), one has d ∈ N . So,
d ∈ D ∩N and one obtains d = 0.

5) If dim PND < dimD, there exists a nonzero d ∈ D orthogonal to N . By (2.4)
this orthogonality implies d ∈ G i.e d = ∇u. Therefore ∆u = 0 in Ω and ∇u is
parallel to ν on Γ. As Γ is connected this yields u = const and d = ∇u = 0. Thus,
the inequality of the dimensions leads to a contradiction.

Note in addition that in a possible case of dimN > dimD one has clos PCG 6= C.

2.3 Decompositions on Γ.

The space of vector fields ~L2(Γ) contains the subspace of potential fields

PΓ := {∇Γf | f ∈ H1(Γ) } ,

the subspace of solenoidal fields

SΓ := {σ ∈ ~L2(Γ) |divΓ σ = 0} ,

the subspace
P ν

Γ := { ν ×∇Γf | f ∈ H1(Γ) } ,

and the harmonic subspace

HΓ := { η ∈ ~L2(Γ) | divΓ η = 0 , divΓ ν × η = 0} .

The identity (1.4) obviously implies P ν
Γ ⊂ SΓ. The subspace HΓ is of finite dimension

determined by topology of Γ. The smooth classes P∞Γ and S∞Γ are dense in the
corresponding subspaces whereas HΓ ⊂ ~C∞(Γ) .

The Helmholtz and Hodge–Morrey decompositions on Γ are of the well–known
form

~L2(Γ) = PΓ ⊕ SΓ = PΓ ⊕HΓ ⊕ P ν
Γ .

3 Formulas

3.1 Electric DN map.

Let u = uf (x) be a solution to the problem of electrostatics

∆u = 0 in intΩ ; (3.1)
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u = f on Γ (3.2)

with a smooth function f . With this problem one associates the DN map Λ : L2(Γ) →
L2(Γ) , DomΛ = C∞(Γ) ,

Λ f :=
∂uf

∂ν
= ∇uf · ν on Γ ;

recall some of its properties.
(i) The relations KerΛ = {const} RanΛ = Ċ∞(Γ) hold.
(ii) Integration by parts gives

∫

Ω

∇uf ′ · ∇uf ′′ µ = 〈 see (1.1), (3.1), (3.2) 〉 =
∫

Γ

Λ f ′ f ′′ µΓ

and shows that Λ is a nonnegative operator. The well–known fact is that Λ is an
elliptic first order pseudodifferential operator.

(iii) Recall that the integrations J and ~J have been defined in sec. 1.2 . Introduce
a transform H : PΓ → L̇2(Γ), Dom H = P∞Γ ,

H := Λ J .

It is not difficult to check that Ker H = { 0 } and Ran Λ = Ċ∞(Γ) . By standard
arguments of elliptic theory H turns out to be a bounded and boundedly invertible
operator with the inverse H−1 = 〈see (1.7)〉 = ∇ΓΛ−1 .

Given one of the operators Λ or H one can characterize the traces of harmonic
gradients as follows. By virtue of the obvious G∞ = {∇uf | f ∈ Ċ∞(Γ)} we have

trG∞ = {∇Γf + (Λf) ν | f ∈ Ċ∞(Γ) } = {∇Γf + (H∇Γf) ν |∇Γf ∈ P∞Γ } . (3.3)

3.2 Magnetic DN map.

The problem of magnetostatics is of the form

~∆ h = 0 , div h = 0 in intΩ ; (3.4)

ν × h = j on Γ (3.5)

with j ∈ ~C∞(Γ). This problem is solvable but not uniquely: a field h is a solution to
(3.4),(3.5) with j = 0 iff h ∈ D ([6],Lemma 3.5.6). In what follows we denote by hj

the (unique) solution satisfying hj ⊥ D.
With the problem (3.4),(3.5) one associates the DN map ~Λ : ~L2(Γ) → ~L2(Γ) , Dom ~Λ =

~C∞(Γ) ,
~Λ j := (curl hj )θ on Γ ;

let us list some of its properties.
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(i) The relations
∫

Ω

curl hj′ · curl hj′′ µ = 〈 see (1.2), (3.4), (3.5) 〉 =
∫

Γ

~Λj′ · j′′ µΓ

show that the magnetic DN map is a nonnegative operator.
(ii) Recall that the solenoidal subspace SΓ was introduced in sec. 2.3.

Lemma 3 The relations

Ker ~Λ ⊂ SΓ , Ran ~Λ ⊃ P∞Γ (3.6)

hold.

Proof If j ∈ Ker ~Λ, then

0 =
∫

Γ

~Λj · j µΓ = 〈 see (i) 〉 =
∫

Ω

| curl hj |2 µ ;

hence, curl hj = 0 in Ω. Therefore, at the boundary one has

0 = ν · curl hj = 〈 see (1.3), (3.5) 〉 = div Γj ,

so that j ∈ Ker ~Λ leads to j ∈ SΓ.
Take an arbitrary f ∈ C∞(Γ) and represent

∇uf = 〈see (2.3)〉 = curl h + d

with a smooth h ⊥ D, div h = 0 and d ∈ D. Passing to the traces on Γ one obtains

(∇uf )θ = ∇Γ f = (curl h)θ = ~Λ j

where j = −ν × tr h. So, Ran ~Λ covers the class P∞Γ and we arrive at (3.6).
We omit the proof of the following relation specifying a structure of Ran ~Λ:

Ran ~Λ = P∞Γ +̇ tr {N ª PND } .

By virtue of (2.2), 5) this representation easily leads to an interesting equality

dim
{

Ran ~Λ / P∞Γ
}

= dimN − dimD

which, nevertheless, is not too rich in content for tomography: as may be shown, the
difference dimN − dimD is determined by topology of Γ.

Note in addition that relations (3.6) provide the composition div Γ
~Λ−1∇Γ to be

well–defined on C∞(Γ).
(iii) Introduce a transform ~H : L̇2(Γ) → ~L2(Γ) , Dom ~H = Ċ∞Γ ,

~H := ~Λ ~J .
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As is easy to see, this transform is injective; by arguments of elliptic theory ~H is a
bounded and boundedly invertible operator with the inverse ~H−1 = 〈 see (1.7) 〉 =
−div Γ

~Λ−1 .
Given one of the operators ~Λ or ~H we can characterize the traces of harmonic curls.

By virtue of the obvious C∞ = {curl hj | j ∈ P∞Γ } and Ċ∞ = {div Γ j | j ∈ P∞Γ } one
has

tr C∞ = { ~Λ j − (divΓ j) ν | j ∈ P∞Γ } = 〈 see (1.7) 〉 =

= {− ~H div Γ j − (div Γ j) ν | div Γ j ∈ Ċ∞(Γ)} . (3.7)

3.3 First formula.

Here we express β1 = dimN in terms of the DN maps.

Theorem 1 The representations

trN = [ ~Λ + ∇Γ Λ−1 divΓ ] P∞Γ = [− ~H + H−1 ] Ċ∞(Γ) (3.8)

are valid.

Proof Take j ∈ P∞Γ and decompose curl hj by (2.4):

curlhj = ∇u + n .

As j runs over P∞Γ the left hand side runs over C∞ whereas the summands n cover
the subspace N by virtue of (2.5), 3).

Passing to the traces and separating the tangential and normal components one
has

(curlhj )θ = ~Λ j = ∇Γ f + tr n (3.9)

where f = u |Γ ∈ Ċ∞(Γ) and

ν · curl hj = ν · ∇u ,

the last being equivalent to −divΓ j = Λ f or, the same, to

f = −Λ−1 divΓ j . (3.10)

Substituting (3.10) in (3.9) one obtains

tr n = ~Λ j + ∇Γ Λ−1 divΓ j , j ∈ P∞Γ
that is equivalent to the first of the relations (3.8).

Returning to (3.9), the term ~Λ j may be written in the form

~Λ j = 〈see (1.6)〉 = − ~Λ ~J divΓ j = − ~H divΓ j

whereas (3.10) yields

∇Γ f = −∇Γ Λ−1 divΓ j = 〈see (1.5)〉 = −H−1 divΓ j .
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Thereafter we can write (3.9) as

trn = [− ~H + H−1 ] divΓ j , j ∈ P∞Γ
that leads to the second equality in (3.8) by virtue of the evident {divΓ j | j ∈ P∞Γ } =
Ċ∞ (Γ) .

By the injectivity of tr one has dim trN = dimN ; hence, (3.8) leads to

dimN = dim [ ~Λ + ∇Γ Λ−1 divΓ ] P∞Γ = dim [− ~H + H−1 ] Ċ∞(Γ) (3.11)

that is the first of the formulas announced in Introduction.

3.4 Second formula.

Here we find β2 = dimD from the DN maps. Recall the remark made at the last
paragraph of (ii), sec.3.2.

Theorem 2 The representations

trD = { [ Λ + divΓ
~Λ−1∇Γ ] Ċ∞ (Γ) } ν = { [ H − ~H−1 ] P∞Γ } ν (3.12)

are valid.

Proof Take f ∈ Ċ∞(Γ) and decompose ∇uf by (2.3):

∇uf = curl h + d .

As f runs over Ċ∞ (Γ) the left hand side runs over G∞ whereas the summands d
cover the subspace D by virtue of (2.5),4).

Passing to the traces and separating the normal and tangential components one
has

Λ f = −divΓ j + ν · d (3.13)

where j = −ν × h ∈ ~C∞(Γ) and

∇Γ f = ~Λ j ,

the last being equivalent to

divΓ j = divΓ
~Λ−1 ∇Γ f . (3.14)

Substituting (3.14) in (3.13) one has

ν · d = Λ f + divΓ
~Λ−1∇Γ f , f ∈ Ċ∞ (Γ)

that is equivalent to the first of the relations (3.12).
Returning to (3.13), the term Λ f may be written in the form

Λ f = 〈see (1.5)〉 = Λ J ∇Γ f = H∇Γ f
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whereas (3.14) yields

divΓ j = 〈see (1.6)〉 = − ~H−1∇Γ f .

Thereafter one can write (3.13) as

ν · d = [ H − ~H−1 ]∇Γ f , f ∈ Ċ∞ (Γ)

that leads to the second equality in (3.12).
By the injectivity of tr one has dim trD = dimD ; hence, (3.12) leads to a formula

for the 2-nd Betti number:

dimD = dim [ Λ + divΓ
~Λ−1∇Γ ] Ċ∞ (Γ) = dim [ H − ~H−1 ] P∞Γ . (3.15)

3.5 Harmonic quaternion fields.

In conclusion, let us clarify the role of the operators H , ~H as natural 2d-analogs of
the classical Hilbert transform on the unique circle.

One of the equivalent ways of introducing Hclass is the following. Let w = u+ i u∗
be a function analytic and smooth in the disc D := { z ∈ C | |z| ≤ 1 } (so that u
and u∗ are conjugated by Cauchy–Riemann: d u∗ = ? du ), T := ∂D; γ the polar
angle on T , f := u |T , f∗ := u∗ |T The transform Hclass maps d f

d γ to d f∗
d γ and can be

represented as Hclass = ΛJ where Λ is the electric DN map of D, J is an integration:
d
dγ J = id (see [1]).

Returning to a 3d–manifold Ω we say that a function u and a solenoidal field h
are conjugated (and write h = u∗, u = h∗ ) if ∇u = curlh inΩ or, equivalently,
dh∗ = ? dh] . This definition immediatelly implies ∆u = 0 and curl curl h = 0 ,
i.e., ∇u , curlh ∈ G ∩ C ⊂ H .

If at least N 6= { 0 }, so that Ω is of nontrivial topology, not each u satisfying
∆ u = 0 as well as not each h satisfying curl curlh = 0 has a conjugate. However,
a remarkable fact is that the existence of the conjugates may be checked in terms of
the traces of u and h through the operators H and ~H 4 . We omit the proof of the
following result which is a very simple consequence of the representations (3.3) and
(3.7).

Theorem 3 (i) For f ∈ Ċ∞(Γ) the function uf has a conjugate hj = (uf )∗ iff

[1 − ~H H ] ∇Γ f = 0 ;

in this case the equality
divΓ j = −H∇Γ f

holds and determines j ∈ P∞Γ .
(ii) For j ∈ P∞Γ the field hj has a conjugate uf = ( hj )∗ iff

[1 − H ~H ] divΓ j = 0 ;
4as well as in the 2d–case: see [1]
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in this case the equality
∇Γ f = − ~H divΓ j

holds and determines f ∈ Ċ∞(Γ).

A pair q = {u, h} (pointwise, a scalar plus a vector) may be considered as a
”quaternion field” in Ω (see e.g. [2]). We say q to be harmonic and assign it to
the class Q if h = u∗ . As we expect, it is the class Q which will play a key role
in reconstruction of Ω through DN maps. Theorem 3 shows that the set trQ is
determined by the operators Λ , ~Λ and may be explicitly characterized in terms of the
Hilbert transforms H , ~H .

3.6 Comments.

• Recently L.N.Pestov has elaborated a ’microlocal’ version of Hclass and applied
it for solving the 2d kinematic inverse problem [5]. Perhaps, our H and ~H could
be useful for a 3d–generalization (see also [2]).

• If Ω is homeomorphic to a ball in R3 one has dimN = dimD = 0, so that
(3.11) yields ~Λ = ∇ΓΛ−1divΓ and ~H = −H−1. An open question is whether
the electric DN map determines the magnetic one (or conversely) in the general
case.

• I’m obliged to G.M.Henkin for valuable discussions and consultations. I’d like
to thank S.V.Belisheva for assistance in preparing the manuscript.
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